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I. Introduction 
Computer-aided diagnosis (CAD) systems for mammography, under development for more than 10 years, 
are an approach for low-cost double-reading with potential to improve the detection of breast cancer. 
Though results to date have been promising, current systems often suffer from unacceptably high false 
positive rates and lower than expected sensitivity and specificity when evaluated on new data. Improved 
methods are needed for optimally setting the system parameters, particularly in the case of statistical 
models and neural networks which are common elements of most CAD systems. This research project 
looks to apply principles from information theory to build improved statistical models for CAD systems. 

Specifically, we develop a framework for building hierarchical pattern recognizers based on information 
theoretic criteria. The best-known example of such criteria is the minimum description length principal 
(MDL) pioneered by Rissanen [9]. Using these criteria we have developed a framework for building 
generative hierarchical image probability (HIP) models. Since the HIP framework is a generative model, 
i.e., it directly models the probability of the image given the image class; it is well-suited to compression 
and thus application of MDL. Along with conventional MDL we have evaluated predictive MDL (pMDL) 
and Akaiki's information Criterion (AIQ. Although these are used to select the complexity of the model, 
we have also applied information theoretic criteria to select the wavelet basis on which these models are 
built. We applied these techniques to the problems of microcalcification and mass detection. We evaluated 
these techniques using mammographic mass and microcalcification datasets from The University of 
Chicago (UofC) and in all cases performance has been evaluated relative to the UofC CAD system [24], 
i.e., the HIP model augments the UofC CAD system. 

We also rigorously evaluated the generative properties of the model for image synthesis and novelty 
detection. Analysis of the HIP model for synthesizing new mammographic images is important for 
understanding how the model captures image structure specific to mammographic masses. Novelty 
detection is particularly relevant since it would enables our system to establish confidence measures on 
detection, something which most current CAD systems do not offer. Finally we briefly tested the models 
that we trained for classification on the rather different problem of compression, to demonstrate the 
flexibility of this approach. 

II. Body 
The following are the three primary tasks under the first year of the project. 

1. Apply and evaluate the utility of our hierarchical pyramid neural network (HPNN) architecture for 
improving mass detection in a CAD system. 

With help from Paul Sajda, Department of Biomedical Engineering, Columbia University, New York NY, 
10027. 



2. Develop basic MDL framework within context of building models for CAD applications-development 
of HIP framework. 

3. Apply MDL framework to select optimal number of nodes (labels) for statistical (HIP) models. 

The following are the two primary tasks completed under the second year of this project: 

1. Further develop and evaluate the hierarchical image probability model, specifically focusing on the 
generative aspects of its architecture. 

2. Apply and evaluate MDL framework for selecting architecture of hierarchical model. Compare MDL 
framework with other model selection methods. 

The primary tasks of year three were as follows: 

1. Apply MDL selection framework to select wavelet packet bases from wavelet libraries, and train HIP 
models with the resulting representation. 

2. Examine ROIs and correlate ability to detect certain physical structure with information constraint 
learned by model. 

3. Perform ROC analysis and qualitative inspection of ROIs to determine improvement in models' 
performance. Analyze on UofC clinical dataset to determine if generalization performance of new data 
has improved. 

In the following sections we describe our progress in accomplishing these tasks. We refer to our year 1 
report [25] or the papers included in the Appendix for a detailed description of the HIP model. 

A.       MDL and AIC 
We begin with a discussion of information theoretic criteria for selecting between alternative models. 
There are at least two such criteria: the Minimum Description Length (MDL) criterion and the Akaike's 
Information Criterion (AIC). We have investigated the usefulness of these criteria for choosing 
Hierarchical Image Probability (HIP) models for classifying mammographic mass and microcalcification 
Regions Of Interest (ROIs). A typical result is shown in Figure 1. Both MDL and AIC track test Az 

performance—MDL and AIC cost decrease as Az performance on the test set increases. In the following 
we describe the two criteria and then suggest a methods to further improve the information theoretic 
selection criteria. 

1.        MDL 
The minimum description length of a set of data is the length of the data encoded according to some 
probability model, which is the model we are trying to fit to the data, plus the length of the description of 
the model (Rissanen, 1983; Rissanen, 1996). The length of the encoding of the data is the negative log 
probability density of the data according to the model, plus a constant representing the precision with which 
the data must be specified. We ignore this constant when doing model selection, since it is the same for all 
models. 

The code length of the model has two components, a term for coding the architecture, and a term for 
encoding the parameters. Suppose we are comparing models with different structures. For example, we 
may be comparing mixture density models with different numbers of mixture components. We will call the 
different models architectures. In this example, the number of mixture components needs to be encoded, 
and in general the specific architecture must be encoded. In practice this is often ignored, since it is a small 
contribution to the total description length. 



0.B 

0.75 

Test Performance versus Mods! Selection Criteria 
i                          >                         i                          i 

- 

0.7 "•, \ - 

n P.: i                         i                         i                         i 

- 

7.SS 7,7 7.75 7,0 
MDL (solid) and AIC (doWed) Cnte-ria 

7.85 7,9 

X10 

Figure 1. Information theoretic model selection using AIC (red) and MDL (blue). Plotted is model 
cost vs. A.z on the test data. MDL would choose a model with test Az = 0.75 while AIC would choose a 
model with A^O.78. (The uncertainty in these estimates is probably greater than the difference.) 

Given an architecture, we need to encode the parameter. The Cramer-Rao bound gives a lower limit on the 
variance of the parameters about their true value, assuming that the true probability is equal to our 
architecture with some values for the parameters. This limit is the inverse M" of the Fisher information 
matrix M,which is the negative expected value of the second derivative (or Hessian) with respect to the 
parameters of the log probability of the data according to the model, evaluated at the true value of the 
parameters. The precision with which we encode the parameters need not be greater than the precision with 
which we know them, i.e., it need not be greater than the standard deviations given by 

M'1. Thus we would compute the components of the parameter vector along the eigenvectors of M'\ and 
the precision of these components are given by the square roots of the eigenvalues. The total code length 
of the parameters is the sum of the logarithms of these precisions, which is the log of the square root of the 
determinant of M'1. The code length for the parameters 0 is the negative log of the square root of this 
volume, or 

■log(|M-1|1/2) = ilog(|M|). (l) 

Since it involves the probability of all of the data, M is proportional to the number of examples N, at least 
when there are enough examples. Because of this we can pull out the dependence on N. If there are d 
parameters, this gives 
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The second term is constant in the limit of large N, so in that limit we can ignore it. The remaining term is 
straighforward to compute, since we only need to know the number of parameters and the number of 
training examples. The total code length for MDL is therefore, 

N J 

MDL = -£logP(x( 16) + -logN (3) 
i=i 

a.   Predictive MDL (PMDL) 
As stated earlier, minimum description length techniques lend themselves well to HIP models because a 
description length of the images given the HIP model naturally encodes the compactness of the HIP 
distribution along with the likelihood of the data under the HIP distribution. MDL therefore gives us a 
natural means for making various architecture choices, e.g., the number of labels at each level in the 
hierarchy, the types of features to use, and so on. In our first experiments we chose to use a. predictive 
MDL or PMDL approach, due to its apparent simplicity. We take a training set S, say all of the mass ROIs 
in the complete training set, and give the images within it some ordering. We then train the HBP model on 
the first images in S and test it on some of the succeeding images. The test results in a log-likelihood for 
these test images, which we then use to initialize a running sum of test log-likelihoods. We then re-train on 
the first images plus the images on which we already tested, and test on more of the images, again adding 
the test result to the running sum of log-likelihoods. We repeat this until we have tested on the last images 
inS. 

It has been shown [10] that the result is asymptotically equal to the description length of the model and the 
data under the final trained model. Intuitively, one expects a U-shaped curve as a function of model 
complexity. A model that is too simple will give relatively poor results late in the PMDL procedure, since it 
can't adequately fit the data. A model that is too complex will give relatively poor results early in the 
PMDL procedure, since it over fits the data, and in fact overfits it for more iterations than a simpler model. 
Thus models that are either too simple or too complex will have relatively high values for the accumulated 
test error. This intuition does not, of course, guarantee that the optimal model according to PMDL will 
generalize optimally, given the training data. 

Compared to leave-one-out cross-validation PMDL should be quite fast because it starts each re-training 
run at an architecture that was optimized on a large fraction of the new training set. Besides the speed 
advantage, Rissanen claims that PMDL is more reliable than cross-validation [10]. We applied PMDL to 
choosing the number of components or labels at each level in HIP models for positive and negative ROIs, 
and we give those results in the experimental section. 

Though PMDL seems simple, in fact for models of probability distributions ordinary MDL is 
straightforward, so we used plain MDL later in this project. 

2.        AIC 
Akaike's Information Criterion is the expected Kullback-Leibler distance between the true model and the 
best model of the current architecture, given the data set. It is assumed that the architectures form nested 
sets with the true distribution being a member of one of these sets, that the number of examples N is 
sufficiently large, and that the current model is not too far from the true distribution. The resulting criterion 
is 

AIC = -2JriogP(x,. \0)+2d (4) 
i=i 



3.       Deficiencies of the information criteria 
Both MDL and AIC assume that there are sufficent examples, N. Treatments of MDL, for example, 
sometimes use the term "asymptotically", which implies the number of examples goes to infinity for a fixed 
model (Rissanen, 1996). Thus we should only expect to get good results from these criteria if we have 
enough examples and we find a best model before trying models that are too large for the amount of data. 
In our current experiments we are not obviously in this situation. We have a fixed number of examples, 
and we are varying the model complexity. There is no criterion for deciding whether we have enough 
examples, or, alternately, when we have too complex a model for the criteria to be valid. 

One possible method to address this "asymptotic" issue is to add corrections to the criteria For MDL, the 
correction is clear: include the second term from Equation (2). This is certainly more complex, but it is 
feasible. For the HIP model it should be possible to estimate the Hessian numerically. 

B.       HPNN 
Prior to this project [11] we had developed a coarse-to-fine hierarchical pyramid/neural network (HPNN) 
architecture that combines multi-scale image processing techniques with neural networks to detect 
microcalcifications in digital/digitized mammograms (see Figure 2A). To search an image we apply the 
network at a position and use its output as an estimate of the probability that a microcalcification is present. 
We then repeat this at each position in the image. In the coarse-to-fine HPNN, the hidden units of networks 
operating at low resolution or coarse scale learn associated context information, since the targets 
themselves are difficult to detect at low resolution. The context is then passed to networks searching at 
higher resolution. The use of context can significantly improve detection performance since 
microcalcifications have few distinguishing features. In the HPNN, each of the networks receives 
information directly from only a small part of several feature images and so the networks can be relatively 
simple. The network at the highest resolution integrates the contextual information learned at coarser 
resolutions to detect the object of interest. 

Under this project, we have extended the HPNN architecture by inverting the information flow in the 
coarse-to-fine architecture. This fine-to-coarse HPNN has networks extracting detail structure at fine 
resolutions of the image and then passing this detail information to networks operating at coarser scales 
(see Figure 2B). This is useful for many types of objects, such as mammographic masses, for which 
information about the fine structure is important for discriminating between different classes. Radiologists 
often distinguish malignant from benign masses based on the detailed shape of the mass border and the 
presence of spicules alone the border. Thus the fine-to-coarse HPNN should be well suited to this problem. 

At each level of the fine-to-coarse HPNN several hidden units process the feature images. The outputs of 
each unit at all of the positions in an image make up a new feature image. This is reduced in resolution by 
the usual pyramid blur-and-subsample operation to make an input feature image for the network units at the 
next lower resolution. We trained the entire fine-to-coarse HPNN as one network instead of training a 
network for each level, one level at a time. 

This training is quite straightforward. Back-propagating error through the network units is the same as in 
conventional networks. We must also back-propagate through the pyramid reduction operation, but this is 
linear and therefore quite simple. In addition we use the same UOP error function used in our previous 
work to train the coarse-to-fine architecture [12]. The rationale for this application of the UOP error 
function is that the truth data specifies the location of the center of the mass at the highest resolution. 
However, because of the sub-sampling the center cannot be unambiguously assigned to a particular pixel at 
low resolution. 
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Figure 2. HPNN architectures. (A) The coarse-to-fine HPNN architecture exploits large-scale 
context to help detect small objects at fine scales. (B) The fine-to-coarse HPNN integrates fine-scale 
details to detect extended objects. 

The features input to the fine-to-coarse HPNN are filtered versions of the image, with filter kernels given in 
polar coordinates by 

Va.Ar>0) = q>p 

\ 1/2 

7t(q+\p\)\^ 
\p\ ~r2/2liq

p\(r2)eiPd 
(5) 

where ZL ' is an associated Laguerre polynomial. These have several convenient features. First, they are 

complete, so any image structure can be described in terms of them. Second, they are combinations of 
derivatives of Gaussians, and can be written as combinations of separable filter kernels (products of purely 
horizontal and vertical filters), so they can be computed at relatively low cost. Third, they are easy to steer, 
since this is just multiplication by a complex phase factor. We steered these in the radial and tangential 
directions relative to the tentative mass centers, and used the real and imaginary parts and their squares and 
products as features. The center coordinates of the tentative masses are generated by the earlier stages of 
the CAD system. These features were extracted at each level of the Gaussian pyramid representation of the 
mass ROI, and used as inputs only to the network units at the same level. 

The fine-to-coarse HPNN is quite similar to the convolution network proposed by Le Cun, et al [5], 
however with a few notable differences. The fine-to-coarse HPNN receives as inputs preset features 
extracted from the image (in this case radial and tangential gradients) at each resolution, compared to the 
convolution network, whose inputs are the original pixel values at the highest resolution. Secondly, in the 
fine-to-coarse HPNN, the inputs to a hidden unit at a particular position are the pixel values at that position 
in each of the feature images, one pixel value per feature image. Thus the HPNN's hidden units do not 
learn linear filters, except as linear combinations of the filters used to form the features. Finally the fine-to- 
coarse HPNN is trained using the UOP error function, which is not used in the Le Cun network. 

1. HPNN Mass detection results 
As for microcalcifications [11], we apply the HPNN as a post-processor, but here it processes the output of 
the mass-detection component of UofC CAD system. The data in our study consists of 72 positive and 100 
negative ROIs. These are 256-by-256 pixels and are sampled at 200-micron resolution. Half the data was 
used for training and half for testing. 

Currently our best performing fine-to-coarse HPNN system for mass detection has two hidden units per 
pyramid level. This gives an ROC area (Az) of 0.85 and eliminates 32 % of the false-positives without any 
loss in sensitivity. When tested on a third set of ROIs (36 positives and 200 negatives), the HPNN actually 
gave better performance, with Az increasing to 0.89 and eliminating 51 % of the false positives (Figure 3). 
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Figure 3. ROC curves of HPNN mass detector for validation set (part of the set from which training 
data was drawn) and a separate test set. (Data was provided by Prof. Maryellen Giger of the 
University of Chicago.) 

C.       HIP 
Though our results for the application of the HPNN to mammographic CAD have been promising, the 
HPNN is not a good framework for applying MDL techniques for model selection. Since the HPNN 
estimates the class probability there is one bit of information per example (i.e. the ROI either has a mass or 
it does not). From the MDL point of view we are attempting to reduce the number of bits needed to specify 
the classes of a set of images by using a model to estimate those bits from the images. Since we need bits 
to specify the model and only one bit per image to specify its class without compression, we would need 
very many images to save more bits than those needed to encode the model. Most approaches to object 
recognition in images also estimate P(Class | Image), and so do not work well with MDL techniques. 

Alternatively, if we estimate P(Image | Class), we are encoding an image, so we potentially save very many 
bits. In this case it is easy to save more bits compressing the image than it takes to specify the model, 
possibly even with a single image. This is important, given that many MDL techniques are only valid 
asymptotically [10], i.e., with a large amount of data. (A single image contains a large amount of data, in 
some sense, but the model structure determines whether this can be exploited.) 

A model of the probability distribution of images has many other attractive features. We could use this for 
object recognition in the usual way by training a distribution for each object class and using Bayes' rule to 
get P(Class | Image). Since we would have P(Image), we could apply the resulting model to many different 



tasks without further training or model selection. For example, we can detect unusual images and reject 
them rather than trust the classifier; something that is not possible with models of P(Class | Image). We 
could also use the mode to compress the images. Since a model of the distribution of data can be used to 
generate random examples that are supposedly typical of the data, this type of model is often referred to as 
a generative model. 

Though the HPNN is not ideally suited for the application of MDL, it does have some attractive features. 
Most importantly, the HPNN is a framework for learning and integrating multi-resolution information for 
object classification. For instance, the HPNN is able to improve microcalcification detection performance 
for the University of Chicago CAD system because it can exploit low resolution contextual information, 
such as the location of blood vessels and the ductal system [11]. Thus a generative modeling framework 
should also take advantage of multi-resolution information for exploiting contextual information. 

We have developed a model of image distributions with these properties, that we call the Hierarchical 
Image Probability or HIP model. In the following section we briefly describe previous work in modeling 
the probability distributions of images. We then describe the new framework of HIP models we have 
developed. We present the theory behind the framework and then our results in applying the HIP model to 
mammographic mass and microcalcification detection. We include discussions of several topics mentioned 
above, namely novelty detection, synthesis of images as a means of investigating the models, and 
compression. We also present our investigation of information theoretic techniques for choosing wavelet 
packet bases on which to build HIP models. 

1.       Theory 

a.   Previous work in modeling image probability distributions 
Many image analysis algorithms use probability concepts, but few treat the distribution of images. Zhu, Wu 
and Mumford [14] do this by computing the maximum entropy distribution given a set of statistics for some 
features. This works well for textures but it is not clear how well it will model the appearance of more 
structured objects. In addition, with their approach it is easy to compute the probability of an image but 
harder to sample from the distribution, i.e., generate new artificial images. The ability to sample is 
necessary for many image analysis applications, e.g., compression. 

There are several algorithms for modeling the distributions of features extracted from the image, instead of 
the image itself. The Markov Random Field (MRF) models are an example of this line of development; see, 
e.g., [6,4]. Unfortunately they tend to be very expensive computationally. Because it is not an image 
distribution it only applies to some image analysis tasks, such as texture classification, that do not require 
sampling. 

In De Bonet and Viola's flexible histogram approach [2, 1], features are extracted at multiple image scales, 
and the resulting feature vectors are treated as a set of independent samples drawn from a distribution. They 
then model this distribution of feature vectors with Parzen windows. The flexible histogram approach has 
given good results, but the feature vectors from neighboring pixels are treated as independent when in fact 
they share exactly the same components from lower-resolutions. To fix this one might build a model in 
which the features at one pixel of one pyramid level condition the features at each of several child pixels at 
the next higher-resolution pyramid level. 

The multi-scale stochastic process (MSP) methods do exactly that. Luettgen and Willsky [8], for example, 
applied a scale-space auto-regression (AR) model to texture discrimination. They use a quadtree or 
quadtree-like organization of the pixels in an image pyramid, and model the features in the pyramid as a 
stochastic process from coarse-to-fine levels along the tree. The variables in the process are hidden, and the 
observations are sums of these hidden variables plus noise. However, the MSP model distributions are 
Gaussian, i.e., the joint distribution of all of the variables is a Gaussian distribution. This is clearly not the 
case in natural images, such as mammograms. Buccigrossi and Simoncelli [3], for example, have found 
that the distributions of some features have high kurtosis, and that the distribution of one feature 
conditioned on a neighboring feature has a "bow-tie" shape, which cannot follow from a Gaussian joint 
distribution. We have obtained similar results using our HIP model (Figure 4). The MSP approach also 
models the probability of the observations on the tree, not the probability of the image. 
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Figure 4. Empirical (left) and modeled (right) conditional histograms of image feature pairs. 

All of these methods seem well-suited for modeling texture, but it is unclear how we might build the 
models to capture the appearance of more structured objects or objects which are hybrid in nature (e.g. 
which include both structure and texture), such as mammographic masses. We can argue that the presence 
of objects in images can make local conditioning like that of the flexible histogram and MSP approaches 
inappropriate. Objects in the world cause correlations and non-local dependencies in images across 
different resolutions. For example, the presence of a particular object might cause a certain kind of texture 
to be visible at some resolution. Usually the local image structure at lower resolutions by itself will not 
contain enough information to infer the object's presence, but the entire image at lower resolutions might. 
Therefore the probability that a texture is present will depend on a large region in the lower-resolution 
image. 

Similarly, objects create long-range spatial dependencies at a given resolution. For example, an object class 
might result in a kind of texture across a large area of the image. If an object of this class were always 
present, we would know that the texture is present. But if such objects are not always present and cannot be 
inferred from lower-resolution information, knowing that the texture is present at one location tells us that 
it is present elsewhere. 

These considerations imply that the assumptions of the flexible histogram and MSP approaches limit their 
capabilities. The features at one resolution and one location depend on lower-resolution image information 
over a large area of the image, and even given that information they depend on the features at other 
locations at that resolution. 

More recently others have developed models similar to our HIP model. Crouse et al [15] developed a class 
of models they called Hidden Markov Trees (HMTs) that differ in various details from HIP models, but 
share much of the same spirit. They tend to emphasize the high kurtosis of the marginal distributions of 
wavelet coefficients, which they mode with a mixture of two Gaussians. Our HIP model is a little more 
general, at least in some ways, but they seem to have been quite successful in applying HMTs to several 
areas such as image denoising and segmentation. Also Cheng and Bouman [16] developed similar tree- 
structured image probability models for segmentation as extensions of Bouman and Schapiro's work on 
tree-structured multi-resolution segmentation [17]. 

b.   HIP architecture and variations 
Here we briefly describe HTP models and discuss variation in their architectures. A HIP model is built on 
the assumption that image information should be represented at various length scales and that it is usually 
good to condition fine scale information on coarser. For example, given an image of some object at some 
resolution, if we can identify the object we know a great deal about its likely appearance at higher 



resolution. In these cases conditioning on low resolution information makes the higher resolution 
information less dependent at different locations. Accordingly we decompose the image into some multi- 
resolution representation such as a wavelet pyramid decomposition, like the of Simoncelli and Adelson 
[18]. Any invertible decomposition would do, since we are then just expressing the distribution in a 
different coordinate system. We then build a model of the probability distribution of each pyramid level in 
the decomposition, conditioned on the next coarser level, if there is one. These distributions are still very 
complex for most classes of images, so we would like to simplify them further by factoring into individual 
distributions over the wavelet coefficient vectors at each position. By itself this is too strong an 
assumption, but it is necessarily true that if we further condition on appropriate information then the 
distribution does factor, i.e., the coefficient vector at a position is conditionally independent of the vectors 
at other positions. The problem is finding the "appropriate information." Accordingly we add hidden 
variables to the model, build the model so that the model distributions of coefficient vectors are 
conditionally independent, and fit this to the data. 

Our choice for hidden variables is strongly constrained by computational constraints. Accordingly we 
made two choices. First, the hidden variable at a position in a level conditions the wavelet coefficient 
vector at that position, and does so by indexing a multivariate Gaussian distribution for that vector. Thus 
we are building something like a Gaussian mixture model for the coefficient vectors. Dependence between 
levels is introduced by giving the means of the Gaussians a linear dependence on the parent wavelet 
coefficients. 

Our second choice is to give a tree structure to the hidden variables. That is, at each position in a level the 
hidden variable depends only on a hidden variable at the next coarser level at the parent position. This 
position is determined by the subsampling operation of the wavelet decomposition. These parent-child 
relationships then determine a tree or quad-tree like structure. Since the hidden variables are indices of 
mixture components, they are essentially integers in some range. There is therefore a mixture model for the 
coefficient vector at a position, but the probabilities of the components are determined by the rest of the 
image. The same mixture components are used at all locations in a level, but we are free to use different 
components and different numbers of components at each level. 

A minor but important elaboration is needed to model spatial patterns. Originally we assumed the 
distributions at each child position of a parent (upper and lower left, and upper and lower right, for 
example) were the same. We believe it is better to allow these to be different, so that a parent label can 
indicate particular spatial patterns, such as an edge passing through the upper two child positions. We have 
kept this in all except our earliest work. 

That is a basic description of our earliest HIP models. We will often refer to the hidden indices as labels. 
These labels serve a dual purpose: first to determine a Gaussian mixture component, and second, to 
determine the hidden labels at finer resolutions. These two functions are somewhat at odds. For example, 
the hidden label at the very root of the tree may need to have a large number of possible values to cover 
different types of images within the class it is modeling. However there is only one wavelet coefficient 
vector per image at the root, and this vector may have several dimensions, requiring quite a few parameters 
per mixture component. The number of possible values of the hidden label is limited because we need 
sufficient examples per label value to fit the mixture component's parameters. We have addressed this by 
altering the model to have two hidden labels at each position. One hidden label, which we refer to as the 
mixture label, serves as the index of mixture component and depends only on the other hidden label. The 
second hidden label, which we call the hierarchy label, conditions only the local mixture label and the child 
hierarchy labels. This makes it possible to have few mixture components and many hierarchy labels at 
low-resolution pyramid levels. 

We have also divided the mixture labels into what might be called a pattern label, though we continue to 
refer to it as a mixture label, and a scale label. This is intended to add some of the structure that 
Wainwright and Simoncelli found useful in modeling wavelet coefficient statistics [19]. They found that 
much of the statistics between pairs of wavelet coefficients at different positions, orientations, and/or scales 
can be fit by a model with Gaussian distributions for the coefficients and a hidden scale at each position, 
conditioned in a tree structure like the hidden labels in HEP. Their scale variables are continuous, however. 
In our case the pattern label indicates the mean, covariance matrix and correlation matrix that should be 
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used, up to a scale. The scale label indicates a factor by which the mean, covariance and parent correlation 
will be scaled. 

There are many possible variations on these divisions of the hidden labels into different parts. All of them 
basically add substructure to the labels and their dependencies. A version we have recently used has the 
mixture, scale and hierarchy labels. The mixture and scale labels only condition the Gaussian distribution 
of the local coefficient vector, as described above. The hierarchy label conditions the mixture, scale and 
hierarchy coefficients at the child positions, not at the same level. In this way somewhat different functions 
are separated: the local image structure at a given scale and position is influenced by one pair of hidden 
variables, while a separate hidden variable is used to influence the spatial arrangement of such structures at 
finer resolutions. 

c.   Architecture Search 
Information theory gives us criteria by which to judge models, but this alone does not tell us how to select 
models to compare, i.e., what path through the space of possible models we should take to find the best 
model. For the HIP model the search is over vectors of natural numbers, so there is no gradient to follow to 
find even a local minimum. 

Initially we used PMDL as the search criterion along with a pseudo-gradient descent algorithm. In this 
algorithm we computed how the PMDL cost would change when the number of labels at one level was 
changed. We then searched along the vector over levels of these changes for a minimum. This search 
algorithm is sub-optimal. It can get stuck in local minima, and in fact one might say it can get stuck at 
many points that are not even local minima, since the points at which the algorithm exits are only better 
than those neighbors that differ in one component of the architecture vector. If changes in more than one 
component are allowed, many of these final points are probably not local minima. Unfortunately, the 
number of neighbors that differ in more than one component is very large, and since training one 
architecture already takes several hours on a Sun Ultra 60 workstation, this more complete search takes a 
prohibitively long time. 

Furthermore we frequently find architectures and layers for which increasing and decreasing the number of 
components both give a decrease in the cost, yet we only search in one of the two directions, thus probably 
missing better local minima part of the time. 

One alternative to these heuristic approaches is exhaustive search, at least in a bounded region of the search 
space. This is optimal but very expensive. Unfortunately the unknown behavior of means there are no 
better guaranteed-optimal methods. 

It may be possible to develop a split-and-merge algorithm like that of Ueda, et al [13]. Such an algorithm 
would analyze the data conditioned on the model parameters, and attempt to decide which labels in the 
model could be merged and which could be split. In this way a new architecture is always initialized at a 
relatively good fit to the data, rather than with random starting values. This precludes using PMDL to judge 
whether a particular split-and-merge operation improved the architecture, so we would have to use a 
conceptually more straightforward estimate of code length. We have spent a little time investigating split 
and merge criteria, but with no firm conclusions yet. 

In much of our work we tried intuitive approaches. In one such approach we used a HIP architecture in 
which the mixture labels only condition the Gaussians, i.e., the hierarchy labels transmit all of the 
information between levels. We began with one hierarchy label per level, so that they passed no 
information. In effect the HIP model was a set of independent mixture models, one for each level. We 
began with one mixture component and successively split and retrained the components, stopping when the 
AIC or MDL cost began to increase, or when we decided not to spend more computer time. We then added 
hierarchy components, successively splitting these and retraining, stopping according to AIC or MDL. In 
effect we build as good a model of the distribution of coefficient vectors as the data allows, and then use 
the hierarchy components to learn spatial relations between the mixture components. This tended to result 
in very many mixture components and few hierarchy components. In effect it spends most of the 
parameters modeling the marginal distributions of the coefficient vectors. 
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In a second approach, we first only split hierarchy labels (with a small number of mixture labels), 
effectively spending parameters on spatial relationships between the mixture components. A third 
approach is to alternate between splitting the mixture and hierarchy labels. All of these seem to be 
workable, though the approach of splitting mixture labels first seems to suppress the usefulness of 
hierarchy labels. The biggest problem is lack of computer time. Though we have tried to optimize the HIP 
training programs for speed, these search algorithms result in very large models that consume a great deal 
of memory and training time. In fact we have not yet reached a minimum of the AIC cost. 

In summary the problem of architecture search for HIP models remains open. We have some heuristic 
approaches using information theoretic cost criteria that may be adequate. Our chief difficulties are the 
computational resources needed for the large HIP models. 

d.   Choice of image representation 
In our early investigations of image synthesis with HIP models we noticed that our filter sets tended to 
suppress high frequencies. This means that the inverse transformation (reconstructing an image from the 
filtered and sub-sampled images) must boost these frequencies. In extreme cases this will result in ringing. 
In less severe cases there is a tendency toward "blockiness". This appears if we generate a set of white 
noise images, and then construct the original image that would have given these white noise images as 
feature images. That is, we assume the white noise images are feature images and reconstruct the 
corresponding original image. With our previous features this tended to give sharp horizontal and vertical 
edges that nearly group into squares. 

The HIP model can partially eliminate this blockiness because it captures correlations between features at 
neighboring levels. Ignoring these correlations gives increased blockiness. While it is good that the HD? 
model can learn to eliminate artifacts such as blockiness, it is not a good use of the HD? model's resources 
since these artifacts are introduced because of the choice of features. We would prefer to have features that 
do not have such artifacts, so the resources of the HD? model can be devoted to learning other structures. 

We studied this problem by trying to choose better sets of features or wavelets. We have designed even-tap 
wavelets for subsampling by two, and odd-tap wavelets for subsampling by three. (Curiously, when 
subsampling by two the resulting wavelets are only approximately orthonormal, but for subsampling by 
three there are exactly orthonormal wavelets.) We concluded that these minimize the tendency for 
blockiness, but splitting scales into discrete bands, i.e., pyramid levels, inevitably introduces this tendency, 
since a flat power spectrum at each level corresponds to a stepped power spectrum of the corresponding 
image. Probably we could further reduce blockiness through the use of overcomplete representations like 
Freeman and Adelson's steerable pyramids [20]. However HIP would no longer be a model of the image 
distribution, at least not obviously. Instead it is a model of the distribution of feature pyramids. For 
classification problems this may not matter. 

2.       Experiments 

a.   Mass Classification 
We applied HIP to the problem of mass detection in mammographic CAD. We used the same data that was 
used to evaluate the HPNN (72 true positive and 100 false positive ROIs taken from the UofC CAD 
system). For this particular model Az = 0.79. A comparison between the HD? and HPNN performance on 
the same data is shown in Table 1. Though the HD? model's performance on the test data was not as high 
as the HPNN, our efforts at model selection were limited by the long training time and high memory cost of 
the complex HIP models that perform better. Thus we hope that HD? models can perform as well given the 
same amount of data, but they are more costly to train. This is perhaps inevitable since estimating the 
image distribution is a harder task than estimating the conditional class probability. 

Using this new hidden label architecture, the best HIP model pair, as defined by the AIC cost (see below), 
gives Az = 0.78, and has the ROC curve shown in Figure 5. In this case we have eliminated 30% of the 
false positives of the UofC CAD system for mass detection, without loss in sensitivity. 
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Fine-to Coarse HPNN HIP 

Sensitivity Specificity Specificity 

100% 51% 25% 

95 57 36 

90 67 52 

80 79 75 

Table 1. Specificity vs. sensitivity for the HPNN and HIP mass detectors. 
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Figure 5. ROC curve of best HIP model, chosen using AIC. Results are relative to UofC CAD system 
for mass detection. 

b.   Novelty Detection 
Novelty detection identifies examples that are significantly different from the examples on which the 
model(s) was trained [23]. Detecting novel examples can be useful in a CAD system for generating 
confidence measures on the CAD output and identifying data that could be used in future training of the 
neural network/statistical model. The HIP model's generative structure enables novel examples to be 
identified by thresholding the log-likelihood of the models. Figure 6 illustrates how ROC performance 
improves if novelty detection is used to generate a confidence measure for rejecting low-confidence 
examples. In this example, two HIP models were trained, one for positive ROIs and one for negatives 
ROIs (same ROI database as for classification and synthesis). Test data was evaluated by computing the 
likelihood ratio of the models as well as the absolute value of the log-likelihoods. The absolute values of 

13 



the log-likelihoods are thresholded such that low values are considered low confidence and therefore 
rejected (not classified).   As the threshold on the log-likelihood is increased, more ROIs are rejected 
because of low confidence and the area under the ROC curve begins to increase. Also shown in Figure 6 
are data that are rejected (not classified) because they fall below the threshold at the given rejection rate— 
these ROIs are novel with respect to the data on which the models were trained. 

Effect of rejecting low-probability examples on performance 

0.95- 

3 0.85 

0.4 0.5 
Fraction rejected 

Figure 6: Novelty detection for improving ROC performance. The log-likelihood of the two HIP 
models (positive and negative) can be thresholded so that we reject (do not classify) a fraction of the 
test data that is novel, relative to the training examples. Shown is the area under the ROC curve as 
this novelty/confidence threshold is increased (thus increasing the fraction rejected). Also shown are 
examples of negative and positive ROIs that would be rejected at different thresholds. 

c.    Wavelet Bases 
In the usual wavelet decomposition, basis filters are applied to the image and the results are subsampled, 
giving four images or subbands, each with one-fourth the number of pixels of the original image. This 
procedure is successively applied to the low-pass subbands to build the wavelet pyramid. Applying the 
decomposition to the low-pass subbands is a choice; it reflects the property of typical images that only the 
low-frequency components are correlated across long distances. In some images the higher frequencies can 
also be correlated over long distances. Ordered textures like fabrics are good examples of this. Saito has 
suggested a procedure for choosing a different wavelet decomposition to exploit such image structure [21]. 

If every subband is decomposed, the resulting set of subbands forms a tree with edges from each subband 
to those subbands that result from decomposition. The leaves of the tree are single-pixel images with very 
specific frequency content. There are as many leaves as pixels in the original image. The collection of 
such subbands is overcomplete; at any node in the tree the subband contains all the information in any set 
of its descendents. A complete set of subbands is any set that contains one and only one subband on any 
path from the root of the tree to a leaf. Saito called this a wavelet packet basis. 

Saito suggested using an entropy measure to choose between these complete sets of subbands. This 
entropy is obtained by normalizing the sum of the squares of the pixels in the image before decomposing it. 
Because the wavelet transform is orthonormal, the sum of the squares of the pixels in any complete set of 
subbands will also be equal to one. Call the square of a pixel e (for energy), the entropy is defined as 
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H = -lebfX\og(ebx), 
b,x 

(6) 

where the sum is over subbands b and positions x. This is a measure of compactness or sparseness. It is 
maximized if every pixel in every subband has the same energy, and minimized (equal to zero) if only one 
pixel in one subband has non-zero energy. 

Given the tree structure of the wavelet decomposition, Saito searches each branch recursively, comparing 
the partial entropy of a node with the minimal energy of all complete sets of the node's children. This is 
tractable because the partial entropy of a node is independent of the partial entropy in other branches of the 
tree. 

We have experimented with this approach to choosing a wavelet packet basis, using several image classes. 
It appears to be useful for highly structured images like some textures, as suggested above. Mammograms, 
on the other hand, seem to lack sufficient structure to make this as useful, but the technique has shown that 
we can usefully decompose all of the level-one subbands (level zero being the original image), giving a 
wavelet packet basis with relatively high dimensional level two coefficient vectors. The advantage is some 
memory savings in the HIP model, since the highest resolution level is then smaller, and the memory 
needed for HD?'s internal variables during training is reduced. 

d.   Mass Synthesis 
Since the HBP model is a generative model, we can sample the model and synthesize new images. In 
practice, this property might be best utilized for image compression or noise reduction. Within the context 
of ROI classification, synthesized images can give us insight into what features the model is extracting and 
representing for both positive and negative ROIs. Using the same ROI database used for classification, we 
constructed HD? models for positives (cancer) and negatives (no cancer). The trained HD? models were 
sampled to synthesize new ROI images. Figure 7 shows examples of these images. Inspection of the 
synthesized positive ROIs shows more focal structure, with more well-defined borders and higher spatial 
frequency content than the negative ROIs. 

The sampling procedure begins at the coarsest resolution, where the hidden labels are randomly sampled 
from the distribution P(A^). The feature (wavelet coefficient) images G^ are then sampled from 

P(Gi \Ai). The GL are used to construct /^_j, from which the parent feature (wavelet coefficient) 

images F^ are constructed. We then sample A/_i from P(A^_i | A^), and then G£_i from 

P(G i-\ | F^, Ä£_i). This is repeated until the finest resolution is reached and IQ is constructed. 

|-.:<air! 

'"v 

Figure 7: Mammographic ROI images synthesized from positive (left) and negative (right) HIP 
models. Synthesized positive ROIs tend to have more focal structure, with more defined borders and 
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higher spatial frequency content. Negative ROIs tend to be more amorphous with lower spatial 
frequency content. 

e.   Mass Compression 
A stream of random variables can be optimally compressed if we know their distribution, and so having a 
HIP model of a source of images should allow us to compress examples of those images with high 
efficiency. Here we demonstrate compression with HIP models using a simple technique. 

Given an image and a HIP model, we compute the most likely value of each hidden label, 

a\ (x) = argmax P(a/, x, I). 
ai(x) 

(7) 

We then code each feature vector g; (x) using P(g; | f;+i,a\ ,x). The latter is used by decomposing 

* g/ (x) into its components along the eigenvectors of the covariance matrix of P(g/ | f ;+i, a\, x), £ * , 
al 

and coding those components with a specified precision using Huffman encoders for the Gaussian 
distributions with variances given by the eigenvalues of 2 * . The resulting bitstream was stored in a file 

ai 

that was susbequently compressed with gzip to reduce the redundancy in the many short identical bit 
patterns. This procedure is currently very computationally expensive, and is not necessarily optimal even if 
the HIP model exactly matches the image distribution, but it is straightforward to code and serves to 
demonstrate the capability. 
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Figure 8. Error vs. file size for HIP compression algorithm and JPEG. The left plot shows root- 
mean-squared error, while the right plot is maximum error. 
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Figure 9. Detail of compressed images. Left is a piece of the original image, center is the 
corresponding piece of the JPEG-compressed image, and right is the corresponding piece of the HIP 
compressed image. The JPEG and HIP compression parameters were chosen to give obvious 
distortion and nearly equal file sizes. 

Figure 8 shows the root-mean-squared and maximum errors versus the size of the resulting compressed file, 
respectively. This is for one randomly-chosen mass ROI image, which was not part of the training set of 
the HIP model. The HIP algorithm gives mean errors that are comparable to JPEG, and these limited results 
suggest that its maximum errors are a little lower than with JPEG. It is perhaps not surprising, since the 
HIP model was fit to similar data while JPEG is intended to be general, but it demonstrates the potential. 
Compressed and uncompressed images are shown in Figure 9. 

f. Microcalcification Classification 
We also spent some time applying HIP models to the problem of classifying ROIs as microcalcification 
clusters or false positives. This differs somewhat from our previous approaches, in which we attempted to 
detect the individual calcifications, then classify the ROI based on the number of calcifications. The data 
was provided by Prof. Robert Nishikawa at the University of Chicago. We trained the positive model on 
42 ROIs chosen at random from the positives, and the negative model on 88 negatives chosen at random 
from the full set of negatives. This left 42 positives and 87 negatives for testing. Again, while searching 
for the best HIP architecture we ran out of computer memory and training became very slow, due to the 
complexity of the model, before the AIC cost reached a minimum. The resulting ROC curve on the test 
data had A,=0.68. 

g. Microcalcification synthesis 
Applying the trained models to synthesizing microcalcification cluster ROIs gave results like those shown 
in Figures 10 and 11. Figure 10 shows images generated by HTP models chosen by splitting mixture 
components first, while the images in Figure 11 were generated by models chosen by splitting the hierarchy 
components first. Note that all of these images were generated with the same underlying stream of random 
numbers. 

The isolated blobs in Figure 10, especially in the negative image, seem to be due to the poor ability to 
represent spatial patterns. Otherwise, in both cases the negatives seem to be somewhat smoother, but that 
was not always the case for other images generated by the models. 
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Figure 10. Synthetic microcalcification ROIs generated by HIP models. The left image is from the 
positive model, while the right is from the negative model. These were generated by HIP models with 
many mixture components but little information passed between levels by the hidden labels. 

Figure 11. Synthetic microcalcification ROIs generated by HIP models. The left image is from the 
positive model, while the right is from the negative model. By contrast with the previous figure, these 
were generated by HIP models with few mixture components but many hierarchy labels, i.e., a great 
deal of information is passed between levels by the hidden labels. 

3.       HIP Conclusions 
We have developed a class of image probability models we call hierarchical image probability or HIP 
models. We showed that image distributions can be exactly represented as products over pyramid levels of 
distributions of sub-sampled feature images conditioned on coarser-scale image information. We argued 
that hidden variables are needed to capture long-range dependencies while allowing us to further factor the 
distributions over position. In our current model some of the hidden variables act as indices of mixture 
components while others condition these mixture component indices and carry information from one level 
to the next higher resolution level. The resulting model is very similar to the Hidden Markov Tree models, 
but allows modeling somewhat more general image structures. Because they are models of probability 
distributions over images, these kinds of models can be used for a wide range of image processing tasks 
besides classification, e.g., compression, noise-suppression, up-sampling, error correction, etc. Here we 
presented results for mammographic image analysis, including classification, synthesis, and compression. 
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However there are obviously other modalities and medical application areas were HIP models would be 
useful. One in particular is multi-modal fusion, where the problem is to bring a set of images, acquired 
using different imaging modalities, into alignment. One method that has demonstrated particularly good 
performance uses mutual information as an objective criterion [22]. The computation of mutual 
information requires an estimate of entropies, which in turn requires an estimate of the underlying densities 
of the images. The HIP model potentially provides a framework for learning those densities. 

For classification of masses and microcalcifications the HIP models have not been as good as our HPNN 
neural network classifiers. The cause seems to be that the HIP model is learning a much more complex 
task, density estimation on image space, as opposed to the simpler task of estimating class probability from 
the image. Thus the HIP models are much more complex. The information theoretic criteria for choosing 
between models of different complexity seem to be useful, but we have repeatedly found that more 
complex models would give better information theoretic cost, when we could not train those more complex 
models due to limited computer memory and speed. Thus there is room for improvement here in the future. 
Another path toward better performance is to modify the HIP models. The tree structure of the hidden 
variables is far from optimal, correlating some neighbors while leaving others much more independent. 
The only reason for using trees over positions and pyramid levels is computational tractability. Modifying 
the tree structure will require approximate methods, but may well be worth the difficulties. 

III. Key Research Accomplishments 

1. Application of hierarchical pyramid neural network (HPNN) to mammographic mass detection. 
Results show a 51% reduction in false positive rate of The UofC CAD system for mass detection 
without loss in sensitivity. 

2. Development of the hierarchical image probability (HIP) model for mammographic CAD. HIP is a 
generative model that allows for computing confidence measures based on the training data-an 
element that is often absent from CAD systems. More importantly, its structure is well-suited for 
application of MDL model selection techniques. 

3. We have developed search strategies and algorithms for selecting a HIP architecture using MDL and 
AIC information theoretic criteria. 

4. HIP models selected by information theoretic criteria for mass detection reduced the false positive rate 
of the UofC CAD system for mass detection by 30% without loss in sensitivity. We also applied HDP 
models to the detection of microcalcification clusters. 

5. We showed that selecting wavelet packet bases using an information theoretic criterion (entropy) gives 
an image representation that allows a more computationally efficient HIP architecture. In particular 
the model requires much less memory. 

6. We have shown that different information theoretic measures track the HIP generalization performance 
and thus offer good criteria for model selection. 

7. We have demonstrated the utility of the HIP architecture for identifying novel ROIs. This novelty 
detection is useful for defining confidence measures for the classifier. 

8. We have demonstrated the utility of the HEP architecture for synthesizing new positive and negative 
mammographic ROIs. We have discussed how synthesis can be used to gain an intuitive 
understanding of the structure that is captured by the model. 

9. We have demonstrated the utility of the HIP architecture for image compression. 

IV. Reportable Outcomes 

1.    Disclosure/Patent Application "Hierarchical Image Probability Models", March 1999. 
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2. Clay Spence, Lucas Parra and Paul Sajda, "Mammographic mass detection with a hierarchical image 
probability (HIP) model", in Medical Imaging 2000: Image Processing, Kenneth M. Hanson, Editor, 
Proceedings of SPEE Vol. 3979, pp. 990-997 (2000). 

3. Presentation "Hierarchical Pattern Recognition for Mammographic CAD", University of Pennsylvania, 
November 1998. 

4. Invited talk at Columbia University Medical School "Hierarchical Neural Networks for Object 
Recognition: Applications to Mammographic Computer-aided Diagnosis", June 2000 

5. DoD Era of Hope meeting (poster), "A Hierarchical Image Probability Model for Mammographic 
Mass Detection", June 2000 

6. Invited lecture at The University Of Pennsylvania, Department of Bioengineering "Computer Assisted 
Diagnosis for Mammography", November 1999 

7. NIMA/DARPA Medical Dual-use project ($1.8M). Focus on developing dual-use technology for 
medical and military applications. Medical areas include breast cancer, lung cancer, retinal disease and 
neurological disease. 

8. Clay Spence, Lucas Parra and Paul Sajda, "Hierarchical Image Probability (HIP) Models." In the 
Proceedings of ICIP 2000, the IEEE International Conference on Image Processing. 

9. Clay Spence, Lucas Parra and Paul Sajda, "Detection, synthesis and compression in mammographic 
image analysis using a Hierarchical Image Probability (HEP) model." Submitted to MMBIA 2001, the 
IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. 
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V.     Conclusion 

We have demonstrated the utility of hierarchical pattern recognizers for improving the performance of 
CAD systems for mass detection. Mass detection is currently the more difficult problem in mammographic 
CAD (compared to microcalcification detection). For CAD systems to gain clinical acceptance, false 
positives must be significantly reduced without loss in sensitivity. On a small research database, application 
of our HPNN model has resulted in a 51% reduction in false positive rate of the UofC CAD system for 
mass detection. However the HPNN models that we have trained are not well-suited to objective model 
selection techniques, such as MDL. Since objective model selection is often critical to maximizing the 
performance of a pattern recognizer, we developed a new hierarchical pattern recognition framework that 
we call the hierarchical image probability (HEP) model. 

We have developed search strategies for applying information theoretic criteria to the problem of selecting 
the best label architecture for a HEP model. Furthermore, we demonstrated that these criteria correlate well 
with generalization performance of the classifiers. 

Our results show that HEP models selected using these criteria can reduce false positive rates by 30% for a 
data set constructed using The University of Chicago CAD mass detection system. It appears that further 
improvements are likely simply by using more complex HEP models. 

We have used the generative structure of the HEP model to detect novel examples—examples that 
significantly differ from the training data. Novelty detection can be used to generate confidence measures 
and we have shown how these confidence measures can be used to improve ROC performance. In practice 
such examples would be rejected as not reliably classifiable by the models. This capability is not shared 
with classifiers that directly estimate the probability of the class given the image. 
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We have demonstrated other useful aspects of the generative feature of HIP models. We have sampled 
positive and negative HIP models for synthesizing ROIs, enabling us to gain an intuition into the structure 
the HIP model learns for representing the two classes. We also developed a simple algorithm for 
compressing images using HD? models, and showed that it performs a little better than JPEG on 
mammographic regions of interest. 

A.      "So What" Section 
Statistical pattern recognition is a key element in any mammographic computer-aided diagnosis system. 
Hierarchical pattern recognizers are particularly useful since they are capable of exploiting contextual and 
multi-resolution information for detecting clinically significant objects. Most statistical pattern recognizers 
that have been previously developed for mammographic CAD have been trained to estimate the probability 
of the class, e.g., mass or non-mass, given the image or some features extracted from the image. By 
contrast HD? models are trained to estimate the probability distribution of images. This gives HD? models 
many attractive features. One could use HD? for detection/classification in the usual way by training a 
distribution for each object class and using Bayes' rule to get the class probability. We have reported our 
initial results for this application of HD? in this report. 

Even though our original motivation for this model was to develop a framework for hierarchical pattern 
recognition which could exploit techniques in MDL model selection, there are other attractive features of 
the HD? framework which could have a major impact on the design and development of mammographic 
CAD systems. Since HIP computes the probability density at the input image, we could attempt to detect 
unusual images and reject them rather than trust the classifier; something that is not possible with models of 
the class probability. Building confidence measures into CAD systems is an open area of research and the 
HIP model provides a mechanism by which to generate these measures. In fact we have shown results 
illustrating how novelty detection can be used to improve the ROC performance of CAD systems. 

The HD? model has applications other than detection/classification, and can be used in these applications 
without further training. Since the HD5 model is a generative model, one can use it to compress data, given 
the probability distribution of the objects of interest. If one wants lossless compression of a digital 
mammogram one need only train a HD5 model for a set of mammographic images and then use the 
probability model to compress the data. More interesting is the application of HIP for lossy compression. In 
that case, one might train a HD3 model on clinically significant objects, such as mammographic masses, 
since those are the parts of the image one would like to preserve-i.e. have minimal distortion and 
compression artifacts. The entire image can then be compressed using this model. Though there will be loss 
over regions of the mammogram which do not fit the model, those regions of clinical significance will be 
preserved since they will have a good fit to the probability model and require very few bits for 
compression. 

In all of these applications, an essential role was played by the information theoretic algorithms for 
architecture selection. These have proven themselves as reliable and computationally efficient guides to 
the generalization capability of the different classifier architectures. 
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Mammographic mass detection with a hierarchical image 
probability (HIP) model 

Clay Spence, Lucas Parra, and Paul Sajda 
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ABSTRACT 

We formulate a model for probability distributions on image spaces. We show that any distribution of images can be 
factored exactly into conditional distributions of feature vectors at one resolution (pyramid level) conditioned on the 
image information at lower resolutions. We would like to factor this over positions in the pyramid levels to make it 
tractable, but such factoring may miss long-range dependencies. To fix this, we introduce hidden class labels at each 
pixel in the pyramid. The result is a hierarchical mixture of conditional probabilities, similar to a hidden Markov 
model on a tree. The model parameters can be found with maximum likelihood estimation using the EM algorithm. 
We have obtained encouraging preliminary results on the problems of detecting masses in mammograms. 

Keywords: Mammography, CAD, Image Probability 

1. INTRODUCTION 

Many approaches to object recognition in images estimate Pr(class| image). By contrast, a model of the proba- 
bility distribution of images, Pr(image), has many attractive features. We could use this for object recognition 
in the usual way by training a distribution for each object class and using Bayes' rule to get Pr(class | image) = 
Pr(image|class)Pr(class)/Pr(image). Clearly there are many other benefits of having a model of the distribution 
of images, since any kind of data analysis task can be approached using knowledge of the distribution of the data. 
For classification we could attempt to detect unusual examples and reject them, rather than trusting the classifier's 
output. We could also compress, interpolate, suppress noise, extend resolution, fuse multiple images, etc. 

Many image analysis algorithms use probability concepts, but few treat the distribution of images. One of the few 
examples of image distribution models was constructed by Zhu, Wu and Mumford.1 They compute the maximum 
entropy distribution given a set of statistics for some features, which seems to work well for textures but it is not 
clear how well it will model the appearance of more structured objects. 

There are several algorithms for modeling the distributions of features extracted from the image, instead of 
the image itself. The Markov Random Field (MRF) models are an example of this line of development; see, e.g., 
References 2,3. However, they tend to be very computationally expensive. 

In De Bonet and Viola's flexible histogram approach,4,5 features are extracted at multiple image scales, and the 
resulting feature vectors are treated as a set of independent samples drawn from a distribution. The distribution of 
feature vectors is then modeled using Parzen windows. This has given good results, but the feature vectors from 
neighboring pixels are treated as independent when in fact they share exactly the same components from lower- 
resolutions. To fix this one might build a model in which the features at one pixel of one pyramid level condition 
the features at each of several child pixels at the next higher-resolution pyramid level. The multiscale stochastic 
process (MSP) methods do exactly that. Luettgen and Willsky,6 for example, applied a scale-space auto-regression 
(AR) model to texture discrimination. They use a quadtree or quadtree-like organization of the pixels in an image 
pyramid, and model the features in the pyramid as a stochastic process from coarse-to-fine levels along the tree. The 
variables in the process are hidden, and the observations are sums of these hidden variables plus noise. The Gaussian 
distributions are a limitation of MSP models. The result is also a model of the probability of the observations on 
the tree, not of the image. 

All of these methods seem well-suited for modeling texture, but it is unclear how one might build models to 
capture the appearance of more structured objects. We will argue below that the presence of objects in images can 
make local conditioning like that of the flexible histogram and MSP approaches inappropriate. In the following we 
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Figure 1. Pyramids and feature notation. 

present a model for probability distributions of images, in which we try to move beyond texture modeling. This 
hierarchical image probability (HIP) model is similar to a hidden Markov model on a tree, and can be learned with 
the EM algorithm. In preliminary tests of the model on classification tasks the performance was comparable to that 
of other algorithms. 

2.  COARSE-TO-FINE FACTORING OF IMAGE DISTRIBUTIONS 

Our goal will be to write the image distribution in a form similar to Pr(J) ~ Pr(F0 | Fi) Pr(Fi | F2)..., where F( is 
the set of feature images at pyramid level I. We expect that the short-range dependencies can be captured by the 
model's distribution of individual feature vectors, while the long-range dependencies can be captured somehow at 
low resolution. The large-scale structures affect finer scales by the conditioning. 

In fact we can prove that a coarse-to-fine factoring like this is correct. From an image I we build a Gaussian 
pyramid (repeatedly blur-and-subsample, with a Gaussian filter). Call the l-th level ij, e.g., the original image is IQ 

(Figure 1). From each Gaussian level Ii we extract some set of feature images Fj. Sub-sample these to get feature 
images G;. Note that the images in Gj have the same dimensions as 7;+i. We denote by Gj the set of images 
containing Jj+i and the images in G;. We further denote the mapping from J; to Gj by Gi- 

Suppose now that Go '■ lo •-> G0 is invertible. Then we can think of Go as a change of variables. If we have 
a distribution on a space, its expressions in two different coordinate systems are related by multiplying by the 
Jacobian. In this case we get Pr(/0) = |£o|Pr(G0). Since G0 = (Go,/i), we can factor Pr(G0) to get Pr(/o) = 
\Go\ Pr(Go | h) Pr(li). If Gi is invertible for all Z € {0,..., L — 1} then we can simply repeat this change of variable 
and factoring procedure to get 

rL-l 

Pr(/) = niä|Pr(G,|I,+i) 
1=0 

Pr(JL) (1) 

This is a very general result, valid for all Pr(/), no doubt with some rather mild restrictions to make the change 
of variables valid. The restriction that Gi be invertible is strong, but many such feature sets are known to exist, e.g., 
most wavelet transforms on images. 

3. THE NEED FOR HIDDEN VARIABLES 

For the sake of tractability we want to factor Pr(Gj | Ii+i) over positions, something like 

Pr(/)~n   IT   Pr(g/(x)|fm(*)) 
i  xeii+i 

where gi(x) and fj+i(x) are the feature vectors at position x. The dependence of g; on f}+i expresses the persistence 
of image structures across scale, e.g., an edge is usually detectable as such in several neighboring pyramid levels. The 
flexible histogram and MSP methods share this structure. 



While it may be plausible that fj+i (x) has a strong influence on gi(x), a model distribution with this factorization 
and conditioning cannot capture some properties of real images. Objects in the world cause correlations and non- 
local dependencies in images. For example, the presence of a particular object might cause a certain kind of texture 
to be visible at level I. Usually local features f/+i by themselves will not contain enough information to infer the 
object's presence, but the entire image Ii+i at that layer might. Thus gi(x) is influenced by more of 7;+i than the 
local feature vector. 

Similarly, objects create long-range dependencies. For example, an object class might result in a kind of texture 
across a large area of the image. If an object of this class is always present, the distribution may factor, but if such 
objects aren't always present and can't be inferred from lower-resolution information, the presence of the texture at 
one location affects the probability of its presence elsewhere. 

We introduce hidden variables to represent the non-local information that is not captured by local features. They 
should also constrain the variability of features at the next finer scale. Denoting them collectively by ^4, we assume 
that conditioning on A allows the distributions over feature vectors to factor. In general, the distribution over images 
becomes 

Pr(/)«E(n   II   Pr(&(x)\fl+1(x),A)Pi(A\IL+1)\pi(IL+1). 
A    N=0a;e/,+1 ' 

(2) 

As written this is absolutely general, so we need to be more specific. In particular we would like to preserve 
the conditioning of higher-resolution information on coarser-resolution information, and the ability to factor over 
positions. 

As a first model we have chosen the following structure for our HIP model:* 

L 

Pr(J)oc    Y,    I!   II   [Pr(»l$+i,ai.aOPr(aj|ai+i,a:)] (3) 
A0,...,AL J=0x6/|+i 

To each position x at each level / we attach a hidden discrete index or label ai(x). The resulting label image Ai for 
level I has the same dimensions as the images in G;. 

Since ai (x) codes non-local information we can think of the labels Ai as a segmentation or classification at the 
l-th pyramid level. By conditioning ai(x) on ai+i(x), we mean that ai(x) is conditioned on aj+i at the parent pixel of 
x. This parent-child relationship follows from the sub-sampling operation. For example, if we sub-sample by two in 
each direction to get G; from Fj, we condition the variable oj at (x,y) in level I on oj+i at location (|_ar/2j, |_j//2J) in 
level / + 1 (Figure 2). This gives the dependency graph of the hidden variables a tree structure. Such a probabilistic 
tree of discrete variables is sometimes referred to as a belief network. By conditioning child labels on their parents 
information propagates though the layers to other areas of the image while accumulating information along the way. 

For the sake of simplicity we've chosen Pr(g; | f;+i,o/) to be normal with mean gj>a, + M„,f|+i and covariance 
Sai, that is, 

Pr(g|f,a)=AT(g,MQf + gQ,Aa) (4) 

4. EM ALGORITHM 

Due to the tree structure, the belief network for the hidden variables is relatively easy to train with an EM algorithm. 
The expectation step (summing over a;'s) can be performed directly. If we had chosen a more densely-connected 
structure with each child having several parents, we would need either an approximate algorithm or Monte Carlo 
techniques. The expectation is weighted by the probability of a label or a parent-child pair of labels given the image. 
This can be computed in a fine-to-coarse-to-fine procedure, i.e. working from leaves to the root and then back out 
to the leaves. The method is based on belief propagation.7 

*In principle there is also a factor of Pr(Ji+i). In many cases IL+I will be a single pixel that is approximately the mean 
brightness in the image. We ignore this, which is equivalent to assuming that Pr(iz,+i) is flat over some range. In this case 
fi+i is zero for typical features. In addition, there is no hidden variable at+i. If we combine these considerations we see that 
the I = L factor should be read as Y[x Pr(gi | ax,, x) Pr(ax,, x). 
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Figure 2. Tree structure of the conditional dependency between hidden variables in the HIP model. With subsam- 
pling by two, this is sometimes called a quadtree structure. 

Once we can compute the expectations, the normal distribution makes the M-step tractable; we simply compute 
the updated gai, Sa,, Mai, and Pr(a/1 aj+i) as combinations of various expectation values. 

In order to apply the EM algorithm, we need to choose a parameterization for the model. The parameterization 
of Pr(g | f, a) is given above in Equation 4. For Pr(a; | a;+i) we use the parameterization 

r{ai | aj+i) = ^ ±  (5) 

in order to ensure proper normalization. 

Below, we denote the new parameter values computed during the t-th. maximization step as 6t+1 and the old 
values as 0*. 

4.1. MAXIMIZATION 

Maximizing the expectation of the likelihood over the hidden variables with respect to the model parameters gives 
the following update formulae: 

<^+1 = £PrKaH-i,zM<), (6) 
X 

Mit1 = ((giftig - <»),,„, <d>tiB|) (<fmf£i)M, - <U+i)t,ai (€i)t,a,)~\ (7) 

tat' = <»>*,* -K^ft+l)*,«,,. (8) 

and 

KV = ((Si ~ M^fl+1) (gl - M^fl+1f)      -g^iil^. (9) 

Here the brackets {.)£ a  denotes the expectation value 

{X)t>a' ~    Zxrr(aux\i,et)   ■ (10) 

4.2. EXPECTATION 

In the E-step we need to compute the probabilities of pairs of labels from neighboring layers Pr(aj,a;+i,a;/ \I,9t) 
for given image data. But note that in all occurrences of the reestimation equations, i.e. (5,6) and (10), we need 
that quantity only up to an overall factor. We can choose that factor to be Pr(J|#*) and can therefore compute 
Pr(a;,a;-|_i,a;(,7|öi) instead using 

Pr(a/,am,x|/,öt)Pr(/|Ö*)=Pr(a(,a(+1,a;,/|ö
t)= £ Pr(J,A|0*) (11) 

A\ai(x),ai+1(x) 



The computation of these quantities can be cast as recursion formulae, defined in terms of quantities u and d, which 
approximately represent upwards and downwards propagating probabilities. The recursion formulae are 

ui{aux)    =    Pr(g; |f(+1,o;,a;)    JJ    ü(_i(a(,a;') (12) 
a:'6Ch(x) 

üi{ai+i,x)    =    ^2Pi(ai\ai+1)ui(ai,x) (13) 
ai 

di(ai,x)    =    ^Pr(a;|o(+i)J/(o/+i,a;) (14) 
ai+i 

Äi \ U|+i(a«+i,Par(a;)) , , .. .    . 
d[(al+i,x)    = - , ^-di+i(ai+i,Par(x)) (15) 

ui(ai+i,x) 

The upward recursion relations (12-13) are initialized at I = 0 with uo{ao,x) = Pr(g | fj, ao, x) and end at / = L. At 
layer L Equation 13 reduces to üL(OL+I, X) = üL(X)J Since we do not model any further dependencies beyond layer 
L, the pixels at layer L are assumed independent. Considering the definition of u, it is evident that the product of 
all üL (x) coincides with the total image probability, 

Pr(J|0*)= I] üL{x)=uL+l. (16) 
X€IL 

The downward recursion (14 - 15) can be executed, starting with equation (15) at I = L with dL+i {&L+I , %) = 
dL+i(x) = l.t The downwards recursion ends at / = 0 with equation (14). 

We can now compute (11) as 

Pr(ai,ai+1,a;,J|öt)    =    ui(ai,x)di(ai+1,x)Pi(ai\ai+i) (17) 

Pr(a/,a;,/|ö*)    =    ui(ai,x)di(ahx) (18) 

Obviously computations (12-18) in the E-step at iteration t need to be completed with fixed parameters 6l'. 

Because of the dependence of gj on fj+i, these it's and d's are not, in general, actual probabilities. In spite of 
this it can be shown that these recursion relations are correct. 

5. EXPERIMENTS 

5.1.  CLASSIFICATION OF VEHICLES IN SAR IMAGERY 

Though not a medical imaging problem, we first present the results of our experiments on synthetic aperture radar 
(SAR) imagery, since SAR imagery is noisy and involves detecting an extended textured object, much like a breast 
mass and many other medical imaging problems. The problem was to discriminate between three target classes in 
the MSTAR public targets data set, to compare with the results of the flexible histogram approach of De Bonet, et 
al.5 We trained three HIP models, one for each of the target vehicles BMP-2, BTR-70 and T-72 (Figure 3). As 
in Reference 5 we trained each model on ten images of its class, one image for each of ten aspect angles, spaced 
approximately 36° apart. We trained one model for all ten images of a target, whereas De Bonet et al trained one 
model per image. 

We first tried discriminating between vehicles of one class and other objects by thresholding logPr(71 class), i.e., 
no model of other objects is used. In essence this discriminates simply by judging whether an image looks sufficiently 
similar to the training examples. For the tests, the other objects were taken from the test data for the two other 
vehicle classes, plus seven other vehicle classes. There were 1,838 image from these seven other classes, 391 BMP2 
test images, 196 BTR70 test images, and 386 T72 test images. The resulting ROC curves are shown in Figure 4a. 

We then tried discriminating between pairs of target classes using HIP model likelihood ratios, i.e., log Pr(71 classl)- 
logPr(J | class2). Here we could not use the extra seven vehicle classes. The resulting ROC curves are shown in Fig- 
ure 4b. The performance is comparable to that of the flexible histogram approach. 

*The (non-existent) label OL+I can be thought of as a label with a single possible value, which is always set. The conditional 
Pr(az,| ai+i) turns then into a prior Pr(ai) 



Figure 3. SAR images of three types of vehicles to be detected. 
ROC using Pr( I j target) 

BMP-2: Az = 0.77 
T-72:   Az = 0.64 
BTR-70: Az = 0.86 

ROC using Pr (11 targetl) / Pr {11 uirgelS) 

BMP-2 vs T-72: Az = 0.79 
BMP-2 vs BTR-70:   Az = 0.82 
T-72 vs BTR-70: Az = 0.69 

Figure 4. ROC curves for vehicle detection in SAR imagery, (a) ROC curves by thresholding HIP likelihood of 
desired class, (b) ROC curves for inter-class discrimination using ratios of likelihoods as given by HIP models. 

5.2.  MASS DETECTION 

We applied HIP to the problem of detecting masses in ROIs taken from mammograms, as detected by a CAD system 
at the University of Chicago. We trained a HIP model of the distribution of positive images on 36 randomly-chosen 
ROIs that contained masses, and a second HIP model on 48 randomly-chosen ROIs without masses. The likelihood 
ratio was then used as the test criterion, i.e., a threshold on this ratio is used to decide which ROIs will be called 
masses. The true and false positive rates as a function of the threshold were measured on a test set with 36 mass 
and 49 non-mass ROIs. 

A search was performed over the number of hidden labels values at each level. The search criterion was the 
negative log-likelihood on the training data plus the minimum-description-length penalty term, dlog(N)/2, where d 
is the number of model parameters and N is the the number of training examples. The maximum number of labels 
in a level was bounded (somewhat arbitrarily) at 17, since doubling the number of components in a level at this point 
was observed to decrease the MDL criterion, but very little, and the computation time would approximately double. 

The best architecture had 17, 17, 11, 2, and 1 hidden label in levels 0-4, respectively. For this architecture, Az 

was 0.73. This detector had a specificity of 33% at a sensitivity of 95%. The ROC curve is shown in Figure 5. 
While this performance is not as good as we might hope, being worse than our own HPNN classifier,8 for instance, it 
demonstrates that the model captures relevant information for classification. We hope that further work, particularly 
in model and feature selection, will improve on these results. 

6.  CONCLUSION 

We have developed a class of image probability models we call hierarchical image probability or HIP models. To 
justify these, we showed that image distributions can be exactly represented as products over pyramid levels of 
distributions of sub-sampled feature images conditioned on coarser-scale image information. We argued that hidden 
variables are needed to capture long-range dependencies while allowing us to further factor the distributions over 
position. In our current model the hidden variables act as indices of mixture components. The resulting model is 
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Figure 5. ROC curve for HIP detector of Mass ROIs generated by U. Chicago CAD. 

somewhat like a hidden Markov model on a tree. The HIP model can be used for a wide range of image processing 
tasks besides classification, e.g., compression, noise-suppression, up-sampling, error correction, etc. 

There is much room for further work on variations of the specific HIP model presented here. The tree-structured 
discrete hidden variables lend themselves well to exact marginalization, but they fail to capture certain image 
properties. For example, contrast level and orientation could be given continuous parameterizations. See, for 
example, the work of Simoncelli and Wainwright, who developed a very similar model to capture the statistics 
of contrast level (which they refer to as "scale"), though they did not formulate their model as an image probability.9 

Furthermore, as is well known, the tree structure of the hidden variable dependencies will tend to artificially suppress 
the statistical dependence between some neighboring pixels, but not others. Allowing multiple parents would alleviate 
this. Unfortunately, either of these modifications would make it impractical to marginalize over the hidden variables, 
which is the proper probabilistic procedure. There are approximate alternatives to exact marginalization, which 
should allow a far wider variety of hidden variable structures. 
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ABSTRACT 

We formulate a model for probability distributions on im- 
age spaces. We show that any distribution of images can 
be factored exactly into conditional distributions of feature 
vectors at one resolution (pyramid level) conditioned on the 
image information at lower resolutions. We would like to 
factor this over positions in the pyramid levels to make it 
tractable, but such factoring may miss long-range depen- 
dencies. To capture long-range dependencies, we introduce 
hidden class labels at each pixel in the pyramid. The result 
is a hierarchical mixture of conditional probabilities, similar 
to a hidden Markov model on a tree. The model parameters 
can be found with maximum likelihood estimation using the 
EM algorithm. We have obtained encouraging preliminary 
results on the problems of detecting various objects in SAR 
images and target recognition in optical aerial images. 

1. INTRODUCTION 

Many approaches to object recognition in images estimate 
Pr(C 17), the probability that an object of class C is present 
in an image 7. By contrast, a model of the probability dis- 
tribution of images, Pr(7 | C), has many attractive features. 
We could use this for object recognition in the usual way by 
training a distribution for each object class and using Bayes' 
rule to get Pr(C 17), or by using the likelihood ratio be- 
tween Pr(71 C) and Pr(71C). Clearly there are many other 
uses for image distributions, since any kind of data analysis 
task can be approached using knowledge of the distribution 
of the data. For classification we could attempt to detect 
unusual examples and reject them, rather than trusting the 
classifier's output. We could also compress, segment, in- 
terpolate, suppress noise, extend resolution, fuse multiple 
images, etc. 

Many image analysis algorithms use probability con- 
cepts, but few treat the distribution of images, e.g., maxi- 
mum entropy modeling [1]. There are several approaches 
that do not model the probability distribution on an image 

We thank Jeremy De Bonet and John Fisher for kindly answering ques- 
tions about their work and experiments. This work supported by the United 
States Government. 

space, but motivated our work, e.g., MRF models [2,3], the 
flexible histogram approach [4,5], and multiscale stochastic 
processes [6]. All of these methods seem to be well-suited 
for modeling texture, but it is unclear how we might use 
them to capture the appearance of more structured objects. 

As in many other approaches, we model the distribu- 
tion of local image structure by using some local features, 
namely the outputs of some filters, and capture longer-range 
(either in scale or position) dependencies by modeling the 
influence of neighboring structures on each other. However, 
we argue that the presence of objects in images can make 
local conditioning like this inadequate. We capture these 
long-range dependencies by using hidden variables. The de- 
pendencies between the hidden variables in our model are 
local, like those in some MRF models, but marginalizing 
over them introduces long-range dependencies. We expect 
that such hidden variables would give poor models of ob- 
ject structure if they were only implemented at one pyramid 
level. Therefore we introduce them at all levels in a pyra- 
mid, and give them coarse to fine dependence. 

2. THE HIP MODEL 

To show that such a model can be a proper distribution on 
an image space, we show that any distribution on an image 
space can be factored into a coarse to fine hierarchy of con- 
ditional distributions. From an image I we build a Gaussian 
pyramid. Call the Z-th level 7;, e.g., the original image is 
7o. From each Gaussian level 7j we extract some set of fea- 
ture images F; (Figure 1). Sub-sample these to get feature 
images G/, so that the images in G; have the same dimen- 
sions as 7i+i. Denote the set of images {7;+i, Gj} by G;, 
and the mapping from It to G; by Qi. If Qi is invertible for 
all I e {0,..., L — 1} it is easy to show that 

Pr(7) = 
■L-\ 

niäipr(G< ii+i) 
1=0 

Prtft) (1) 

In order to factor Pr(Gj 17;+i) over positions, we intro- 
duce hidden variables. There is enormous freedom in this 
choice, although different choices can be easier or harder 
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Fig. 1. Pyramids and feature notation. 

to work with. One simple but non-trivial choice is to intro- 
duce an image Ai of integers at each level I. We assume 
that these contain enough information to allow us to factor 
Pr(G( | ij+i). Furthermore we assume that the local hidden 
variable a; (x) and the local lower-resolution feature vector 
fj+i (x) carry all of the information in Zj+i that is relevant 
to the local feature vector g; (a;). This gives 

L, 

Pr(I)<x      E      II   II   [^(Si\ii+i,a,,x) 
A0 AL-! l=0xeli + i 

xPi(ai\ai+1,x)j,    (2) 

where ai+\ (x) is the hidden variable at the parent of x in 
the tree structure given by the sub-sampling operation. (To 
avoid repeating the string "(x)", we specify the location x 
as a conditioning variable in each Pr().) 

3. TRAINING WITH EM 

This model can be fit to data using an Expectation-Maxi- 
mization (EM) algorithm. The E-step is the sum over hid- 
den variables, which is tractable thanks to the tree struc- 
ture of their dependencies. We choose Pr(g; | f;+i, a{) to 
be normal with a mean that depends linearly on fj+i, i.e., 
Pr(g; I fj+i, en) = Af{Ma, fj+i + g0,, Ao,). This makes the 
M-step tractable, and is rich enough to reproduce the non- 
Gaussian distribution of neighboring features on each other 
(see [7]). To enforce normalization we parameterize the la- 
bel probabilities as Pr(a, | al+1) = 7ra,>a,+1 / £a( 7ra,ia,+1. 
We denote by 9 = {ga,,Ma,,Aa,,7ra,i01+11Vaj,VZ} the vec- 
tor of all parameters. For brevity we simply reproduce the 
relevant formulas without derivations. 

To compute the expectations in the EM algorithm we 
need the joint probabilities of the image and individual la- 
bels at a position and pyramid level. These are given as 

Pr(aj,aj+i,a;, I\6t) = ui(ai,x)di(ai+i,x)PT(ai\ai+i) 

(3) 

(4) 

where #' is the parameter vector from the i-th EM iteration. 
The quantities u and d are obtained through the upward and 
downward recursion relations 

ui{ai,x) =Pr(g; |fj+i,aj,a;)     JJ    ü/_i(aj,x') (5) 
x'eO\(x) 

üi(al+1,x) = ^2Pi(ai\ai+1)ui(ai,x) (6) 

di(ai,x) - ^Pr(ai|aj+i)dj(aj+i,a;) (7) 
aj+i 

- w;+i(ai+i,Par(x)) 
di(ai+i,x) =        - /   ±-^-dl+1(al+1,Par(x)). 

ui(ai+i,x) 
(8) 

Here Ch(x) is the set of pixel locations in some level I that 
are children of pixel x in level / +1 in a tree relationship of 
pixels in the pyramid. Similarly, Par(x) is the parent pixel 
of x. 

The upward recursion relations (5 - 6) is initialized at 
I = 0 with uo{ao, x) = Pr(g | fi, a0, a;) and ends at I = L. 
At layer L (6) reduces to üL(aL+i,x) = üL{X)} Since 
we do not model any further dependencies beyond layer L, 
the pixels at layer L are assumed independent. The prod- 
uct of all üL(X) coincides with the total image probability, 
Pr(/|0') = ELe/t üL{X) = UL+I- The downward recur- 
sion (7 - 8) can be executed, starting with equation (8) at 
I = L with dL+i(a.L+i, x) = dr,+i(x) = l.1 

For the update equations, let us denote the average over 
position at level I weighted by Pr(o;,x \I,#*) by (.)t , 
i.e., 

Wt.ai = 
EsPrfa.slI.fl'JXQiO 

(9) 

Then the update equations for the Gaussian parameters are 

x ((ft+iCi)t,o, - (Mt,*, (€i)t,aiy\ ei«) 

S£1 = (&ha,-K'1({l+Ikar (ID 

and 

Alt1 = ((» - M^fl+1) (g, - M^fl+1f) 
\ / t,ai 

-g^git17     (12) 

The update equation for the label probability parameters is 

C+^E^'-^^i7^')-     <13> 

Pi(ai,x,I\6l) = ui(ai,x)dt{ai,x), 

'The (non-existent) label a^+i can be thought of as a label with a 
single possible value, which is always set. The conditional Pr(o£ | a^+i) 
turns then into a prior Pr(ai) 



Fig. 2. Examples of positive (left) and negative (right) ROIs 
for the aircraft detection problem. Data from the MassGIS 
at http://ortho.mit.edu/nsdi/. 

Fig. 3. Az values from a jack-knife study of detection per- 
formance of HIP and HPNN (hybrid pyramid/neural net- 
work) models. 

4. EXPERIMENTS 

We have applied this HIP model to two problems. The first 
was to detect aircraft in aerial photographs. The HTP model 
performed substantially better than our own hybrid pyramid 
neural network (HPNN) algorithm [8]. (See Figures 2 and 
3.) (For a better comparison we would select features inde- 
pendently for the HTP and HPNN models. The HPNN gave 
Az = 0.86 with a different set of features.) 

For vehicle discrimination in SAR, we performed an ex- 
periment with the three target classes in the MSTAR pub- 
lic targets data set, to compare with the results of the flex- 
ible histogram approach of De Bonet, et al [5]. We trained 
three HIP models, one for each of the target vehicles BMP- 
2, BTR-70 and T-72 (Figure 4). As in [5] we trained each 
model on ten images of its class, one image for each of ten 
aspect angles, spaced approximately 36° apart. We trained 
one model for all ten images of a target, whereas De Bonet 
et al trained one model per image. 

We first discriminated between vehicles of one class and 
other objects by thresholding log Pr(71C), i.e., no model of 
other objects is used. For the tests, the other objects were 
taken from the test data for the two other vehicle classes, 

Fig. 4. SAR images of three vehicle classes. Data from the 
MSTAR public data set. 

plus seven other vehicle classes. There were 1,838 image 
from these seven other classes, 391 BMP2 test images, 196 
BTR70 test images, and 386 T72 test images. The resulting 
ROC curves are shown in Figure 5a. 

A second discrimination criterion that uses a distribution 
is the likelihood ratio, log Pr{I \ d) - log Pr( J | C2). Here 
we cannot use the extra seven vehicle classes. The result- 
ing ROC curves are shown in Figure 5b. The performance 
is comparable to that of the flexible histogram approach of 
De Bonet et al. 

5. CONCLUSION 

We have presented a hierarchical image probability (HTP) 
model for probability distributions of images, and demon- 
strated its utility in a pair of object recognition tasks. The 
model uses hidden class labels to capture long-range de- 
pendencies. A distribution model has many potential uses 
besides recognition, including compression, noise suppres- 
sion, novelty detection, segmentation, etc. 

The HIP model has two key elements. First is the re- 
striction that the features be invertible to make the model 
a proper probability distribution on the image space. It ap- 
pears to be possible to relax these restrictions in some cases. 
Second is the use of hidden variables, since these are needed 
to express long-range dependencies in the model. Our cur- 
rent hidden variable structure was chosen for tractability, 
since we can explicitly marginalize the hidden variables in 
this structure. Generalizations like choosing a connectivity 
denser than a tree, or including continuous hidden variables 
could have benefits, but we would need approximations to 
evaluate the probabilities. There is much room for further 
work along these lines. 

We are also working on sampling from HIP models, i.e., 
generating random images. This capability provides an in- 



dependent means of evaluating the model that is not avail- 
able with neural network models of Pr(C | /). 
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Abstract 

We develop a probability model over image spaces and 
demonstrate its broad utility in mammographic image anal- 
ysis. The model employs a pyramid representation to factor 
images across scale and a tree-structured set of hidden vari- 
ables to capture long-range spatial dependencies. This fac- 
toring makes the computation of the density functions local 
and tractable. The result is a hierarchical mixture of condi- 
tional probabilities, similar to a hidden Markov model on a 
tree. The model parameters are found with maximum likeli- 
hood estimation using the EM algorithm. The utility of the 
model is demonstrated for three applications; 1) detection 
of mammographic masses in computer-aided diagnosis 2) 
qualitative assessment of model structure through mammo- 
graphic synthesis and 3) lossless compression of mammo- 
graphic regions of interest. 

1. Introduction 
In mammographic computer-assisted diagnosis (CAD) one 
typically estimates Pr(C|i), the conditional probability of 
class C (e.g. benign vs. malignant) given image I or a 
set of features extracted from I. Previous efforts have con- 
centrated on the development of such discriminant models 
for CAD [1][2][3][4][?]. By contrast, a generative model, 
Pr(J|C), has many attractive features. Classification is pos- 
sible by training a distribution for each class and using 
Bayes' rule to obtain Pr(C|J) = Pr(J|C)Pr(C)/Pr(J). 
However there are many other benefits of having a model of 
the distribution of images, since any type of image analysis 
can be approached using knowledge of the distribution of 
the data. For example, anomalous images can be detected 
and rejected, rather than trusting the classifier's output. A 
generative model can also be used to compress, interpolate, 
suppress noise, increase or extend resolution, and fuse mul- 
tiple images. 

In the computer vision and pattern recognition commu- 
nity there has been limited work directed at developing 

probabilities for images. One of the few examples of im- 
age distribution models is that constructed by Zhu, Wu and 
Mumford[5]. In their approach they compute the maximum 
entropy distribution given a set of statistics across a num- 
ber of features. Though this approach works well for tex- 
tures, it is not clear how well it will model the appearance 
of more structured objects. Several algorithms have investi- 
gated modeling the distributions of features extracted from 
the image, instead of the image itself. The Markov Ran- 
dom Field (MRF) models are one such example; see, e.g., 
References [6, 7]. However, these models tend to be com- 
putationally expensive. 

Recently, De Bonet and Viola's proposed a flexible his- 
togram approach[8,9], where features are extracted at mul- 
tiple image scales, with the resulting feature vectors treated 
as a set of independent samples drawn from a distribution. 
The distribution of feature vectors is then modeled using 
Parzen windows. Though they report good results, their 
model treats the feature vectors from neighboring pixels 
as independent samples when in fact they share exactly the 
same components from lower-resolutions. One solution to 
this is to build a model in which the features at one pixel 
of one pyramid level condition the features at each of sev- 
eral child pixels at the next higher-resolution pyramid level. 
The multiscale stochastic process (MSP) methods do ex- 
actly that. Luettgen and Willsky[10], for example, applied a 
scale-space auto-regression (AR) model to texture discrim- 
ination. They use a quadtree or quadtree-like organization 
of the pixels in an image pyramid, and model the features 
in the pyramid as a stochastic process from coarse-to-fine 
levels along the tree. The variables in the process are hid- 
den, and the observations are sums of these hidden variables 
plus noise. However the assumed Gaussian distributions are 
a limitation of MSP models as well as the fact that the model 
is of the probability of the observations on the tree, not of 
the image. 

All of these methods appear well-suited for modeling 
texture, but it is unclear how one might build models to 
capture the appearance of more structured objects.   For 



example, in mammography, benign and malignant masses 
tend to be characterized by a combination of texture and 
shape features[ll] and may also include contextual influ- 
ences. Therefore local conditioning, like that of the flexible 
histogram and MSP approaches, is inadequate. 

Recently, several groups have developed what are essen- 
tially extensions of the MSP models by adding hidden vari- 
ables. These can be seen as improving the model's ability to 
capture non-local dependencies in the image. For example, 
Crouse et al developed their Hidden Markov Tree (HMT) 
models [12] for signals and images. A primary motivation 
of these models is to capture the tendency for wavelet co- 
efficients to group into two classes, one with large and the 
other with small coefficent magnitudes. Thus their hidden 
states have one of two values corresponding to large and 
small wavelet coefficients. This is well suited to the many 
signal and image types that have homogeneous regions with 
boundaries. These models have been successfully applied 
to several problems, especially image denoising and tex- 
ture segmentation. Cheng and Bouman [13] applied an- 
other model of this sort for segmentation, in which the ob- 
served class labels play the role of hidden variables, and so 
of course are no longer hidden. 

We have independently developed a class of models for 
probability distributions of images that we call hierarchi- 
cal image probability (HIP) models. These also have tree- 
structured graph of the dependencies between hidden vari- 
ables at different scales, and use mixtures of multivariate 
Gaussians to model the local distributions of vectors of 
features. In the following we present the basic HIP mod- 
els, along with EM algorithm for training the models. We 
show preliminary results of the application of HIP models 
to mammographic image analysis, including lesion classifi- 
cation, mammographic synthesis and compression of mam- 
mographic ROIs. 

2   Coarse-To-Fine Factoring Of Im- 
age Distributions 

Our goal will be to write the image distribution in a form 
similar to Pr(J) ~ Pr(F0 | Fi) Pr(Fi | F2)..., where F; 
is the set of feature images at pyramid level /. We expect 
that the short-range dependencies can be captured by the 
model's distribution of individual feature vectors, while the 
long-range dependencies can be captured at low resolution. 
The large-scale structures affect finer scales by the condi- 
tioning. 

We first prove that a coarse-to-fine factoring like this is 
correct. From an image I we build a Gaussian pyramid (re- 
peatedly blur-and-subsample, with a Gaussian filter). Call 
the Z-th level I;, e.g., the original image is 7o (Figure 1). 
From each Gaussian level 7j we extract a set of feature im- 
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Figure 1: Pyramids and feature notation. 

ages Fj. Sub-sample these to get feature images Gj. Note 
that the images in G( have the same dimensions as Zj+i. 
We denote by G( the set of images containing J;+i and the 
images in G;. We further denote the mapping from 7j to G; 
by Q\. 

Suppose that Go '■ lo *-> Go is invertible. Then we 
can think of Go as a change of variables. If we have 
a distribution on a space, its expressions in two differ- 
ent coordinate systems are related by multiplying by the 
Jacobian. In this case we get Pr(io) = |öo|Pr(Go). 
Since Go = (Go, h), we can factor Pr(Go) to get 
Pr(J0) = löol Pr(G0 | h) Pr(ii). If Gi is invertible for all 
/ € {0,..., L — 1} then we can simply repeat this change 
of variable and factoring procedure to get 

Pr(J) = 
L-\ 

niöi|Pr(G,|/i+i) 
1=0 

Pr(IL) (1) 

This is a very general result, valid for all Pr(J), with 
some rather weak restrictions to make the change of vari- 
ables valid. The restriction that Gi be invertible is strong, 
but many such feature sets are known to exist, e.g., most 
wavelet transforms on images. 

3   The Need For Hidden Variables 

For the sake of tractability we want to factor Pr(G; | Ij+i) 
over positions, for example 

Pr(/)~II   II   Pr(»(aO|$+i(aO) 

where g;(a;) and fj+i(a;) are the feature vectors at position 
a;. The dependence of g* on f;+i expresses the persistence 
of image structures across scale, e.g., an edge is usually de- 
tectable as such in several neighboring pyramid levels. The 
flexible histogram and MSP methods share this structure. 

While it may be plausible that fj+i (x) has a strong influ- 
ence on g;(x), a model distribution with this factorization 



and conditioning cannot capture some properties of real im- 
ages. Objects in the world cause correlations and non-local 
dependencies in images. For example, the presence of a par- 
ticular object might cause a certain kind of texture to be visi- 
ble at level I. Usually local features f}+i by themselves will 
not contain enough information to infer the object's pres- 
ence, but the entire image 7j+i at that layer might. Thus 
gi(x) is influenced by more of J(+i than the local feature 
vector. 

Similarly, objects create long-range dependencies. For 
example, an object class might result in a specific kind of 
texture across a large area of the image (e.g. malignant 
breast masses tend to have inhomogenous region enhance- 
ment). If an object of this class is always present, the distri- 
bution may factor, but if such objects are not always present 
and cannot be inferred from lower-resolution information, 
the presence of the texture at one location affects the prob- 
ability of its presence elsewhere. 

To capture these long-range dependencies we introduce 
hidden variables to represent the non-local information that 
is not captured by local features. These hidden varibles also 
constrain the variability of features at the next finer scale. 
Denoting the hidden variables collectively by A, we assume 
that conditioning on A allows the distributions over feature 
vectors to factor. In general, the distribution over images 
becomes 

Pr(/)«£Jn   n   Pr(e(aO|S+i(xM) 
A   '■1=0 I£JI+I 

xPr(i4|I£+i)|pr(JL+1).    (2) 

This is a very general form for A and we instead would 
like to be more specific. In particular we would like to pre- 
serve the conditioning of higher-resolution information on 
coarser-resolution information, and the ability to factor over 
positions. This lead to the following structure for our HEP 
model:1 

Pr(I)cx    J2    II   II   [Pr(»|ü+i,«,,aO 
Ao,---,Ai, 1=0 ze/i-fi 

xPr(oj|oI+i,x)]    (3) 

To each position x at each level I we attach a hidden discrete 
index or label oi(x). The resulting label image A\ for level 
I has the same dimensions as the images in G;. 

'in principle there is also a factor of Pr(7x,+i). In many cases IL+I 

will be a single pixel that is approximately the mean brightness in the im- 
age. We ignore this, which is equivalent to assuming that Pr(/i+i) is flat 
over some range. In this case ft+i is zero for typical features. In addition, 
there is no hidden variable üL+I ■ If we combine these considerations we 
see that the I = L factor should be read as J\x Pr(g£, | OL, x) Pr(oi, x). 

A|+2 

*l+1 

Figure 2: Quadtree structure of the conditional dependency 
between hidden variables in the HIP model. 

Since ai(x) codes non-local information we can think 
of the labels Ai as a learned segmentation at the Z-th pyra- 
mid level. By conditioning ai(x) on oj+i(a;), we mean that 
ai (x) is conditioned on aj+i at the parent pixel of x. This 
parent-child relationship follows from the sub-sampling op- 
eration. For example, if we sub-sample by two in each di- 
rection to get G( from Fj, we condition the variable ai at 
(x,y) in level / on ai+1 at location (\x/2\, \jy/2\) in level 
Z+l (Figure 2). This gives a tree structure to the dependency 
graph of the hidden variables, i.e. a belief network. By 
conditioning child labels on their parents information prop- 
agates though the layers to other areas of the image while 
accumulating information along the way. 

For simplicity we have chosen Pr(g; | f}+i, <ij) to be nor- 
mal with a mean that depends linearly on fj+i, 

Pr(g|f,a)=AA(g,M0f + g0,A0) (4) 

4   EM Algorithm 

Due to the tree structure, the belief network for the hidden 
variables is relatively straightforward to train with an EM 
algorithm. The expectation step (summing over a;'s) can 
be performed directly.2 The expectation is weighted by the 
probability of a label or a parent-child pair of labels given 
the image. This can be computed in a fine-to-coarse-to-fine 
procedure, i.e. working from leaves to the root and then 
back out to the leaves. The method is based on belief prop- 
agation [14]. 

Once the expectations are computed, the normal distribu- 
tion makes the M-step tractable; one simply computes the 
updated g0i, £„,, Mai, and Pr(<jj |aj+i) as combinations 
of various expectation values. 

In order to apply the EM algorithm, a parameteriza- 
tion for the model is required. The parameterization of 
Pr(g | f, o) is given above in Equation 4. For Pr(o( | oj+i) 

2Note that a more densely-connected structure, with each child hav- 
ing several parents, we have required either an approximate algorithm or 
Monte Carlo techniques. 



1 

we use the parameterization 

Pr(Oj I oj+i) = 1=  
2-iai ""oi.oi+i 

(5) 

in order to ensure proper normalization. 
Below, we denote the new parameter values computed 

during the i-th maximization step as 0*+1 and the old values 
as0'. 

4.1   Maximization 

Maximizing the expectation of the likelihood over the hid- 
den variables with respect to the model parameters gives the 
following update formulae: 

<i,+l = EPr(°''°'+i>a:lJ'0*)' (6) 

X(<«+1I&1>«,.I-<^1>M.<^1>«^)"1. 

8^ = <&>,,„,-<"<$+!>«,„, 

(7) 

(8) 

and 

AH1 = ((g, - M^fl+1) (g, - M«Hl+1)
T) 

■t?£?T- (9) 

Here the brackets {.)ta denote the expectation value 

(x)tai = ^^^?S^.       do) ZxPr(ai,x\I,6t)     ■ 

4.2   Expectation 

In the E-step we need to compute the probabilities of pairs 
of labels from neighboring layers Pr(o;, aj+i ,xi\I,6t) for 
given image data. Note that in all occurrences of the reesti- 
mation equations, i.e. (5,6) and (10), we require that quan- 
tity only up to an overall factor. We can choose that factor to 
be Pr(I|0*) and can compute Pr(aj, aj+i, xi, I|0*) instead 
using 

Pr(a(,O(+l!x|J,0')Pr(7|0t)=Pr(ai,O(+1)a;,J|0t) 

Y,        Pr(/,A|0*)    (11) 
A\at(x),ai+1(x) 

The computation of these quantities can be cast as recursion 
formulae, denned in terms of quantities u and d, which ap- 
proximately represent upwards and downwards propagating 

probabilities. The recursion formulae are 

ui{at,x) =Pr(g; \fl+i,ahx) 

x     I]    üt-xiaux') (12) 
aj'6Ch(a:) 

üi(ai+i,x) = Y,Fl(al\al+l)ul(ahx) (13) 
ai 

di(ai,x) = ^Pr(oi|a(+i)d/(a(+i,a;)        (14) 
«1 + 1 

di(ai+i,x) = 
m+i(o;+i,Par(a;)) 

ül(al+1,x) 

xdi+i(al+1,Par(x)) 
(15) 

The upward recursion relations (12-13) are initialized at 
I = 0 with uo(ao,x) = Pr(g|fi,ao,a;) and end at/ = L. 
At level L Equation 13 reduces to üL(üI+I,X) = üL{X)? 

Since we do not model any further dependencies beyond 
layer L, the pixels at layer L are assumed independent. 
Considering the definition of u, it is evident that the product 
of all üL(X) coincides with the total image probability, 

Pr(I|9*)= l[üL(x)=uL+1. (16) 
X€IL 

The downward recursion (14 -15) can be executed, start- 
ing with equation (15) at / = L with dL+i(az,+i,x) = 
di,+i(x) = l.3 The downwards recursion ends at I = 0 
with equation (14). 

We can now compute (11) as 

Pr(o;, ai+i, x, 110*) = ui(ai,x)di(ai+i,x) 

xPr(a/|ai+i)    (17) 

Pr(o;,a;, J|0*) = ui(ai,x)di(cn,x) (18) 

Computations (12-18) in the E-step at iteration t are done 
with fixed parameters 0*. 

5   Experimental Results 

In this section we report some of our preliminary results for 
applying the HTP model to mammographic image analysis. 

5.1    Mass Detection 

To demonstrate utility, we use BOT as a post-processor 
(i.e. adjunct) to the University of Chicago's (UofC) CAD 
system[15]. False positive and true positive regions of in- 
terest (ROIs) were output from the UofC CAD system and 

3The (non-existent) label OL+I can be thought of as a label with a 
single possible value, which is always set. The conditional Pr(ai, | O.L+I ) 
turns then into a prior Pr(az,) 



Figure 3: ROC curve for results of HEP models used as 
a post-processor for mass detection in the University of 
Chicago's mammographic CAD system. 

used for training and testing. The goal was to determine if 
the HEP model could be used to reduce false positives with- 
out significant loss in sensitivity. 

Two HEP models were trained; one using 36 randomly- 
chosen ROIs that contained masses, and a second trained on 
48 randomly-chosen ROIs without masses. The likelihood 
ratio under the two models was used as the test criterion, 
i.e., a threshold on this ratio is used to decide which ROIs 
will be detected as masses. The true and false positive rates 
as a function of the threshold were measured on a novel test 
set consisting of 36 mass and 49 non-mass ROIs. 

A search was performed over the number of hidden la- 
bels values at each level. The search criterion used the neg- 
ative log-likelihood on the training data plus the minimum- 
description-length penalty term, d\og(N)/2, where d is the 
number of model parameters and N is the the number of 
training examples [16]. The maximum number of labels in 
a level was bounded at 17. 

The best perfroming model had an architecture of 17, 
17,11,2, and 1 hidden label in levels 0-4, respectively. The 
receiver operatin characteristic (ROC) curve [17] for the test 
images is shown in Figure 3. For this architecture the area 
under the curve (Az) was 0.75. For this architecture and set 
of parameter the HEP model is able to eliminate 17% of the 
false positives generated by the UofC CAD system, without 
loss in sensitivity. 

5.2   Novelty Detection 

Novelty detection identifies examples that are significantly 
different from the examples on which the model(s) was 

Effect of rejecting low-probabil'rty examples on performance 
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Fraction rejected 

Figure 4: Using the HEP model for novelty detection and 
generating confidence measures. Thresholding the absolute 
value of the likelihood (abscissa) enables rejection of a frac- 
tion of the data that is novel, relative to the data on which 
the models were trained. This acts as a confidence mea- 
sure, which can improve the performance of the model (Az 
values on ordinate axis). 

trained [18]. Detecting novel examples can be useful in 
a CAD system for generating confidence measures on the 
CAD output and identifying data that could be used in fu- 
ture training of the model. The HEP model's generative 
structure enables novel examples to be identified by thresh- 
olding the log-likelihood of the models. Figure 4 illus- 
trates how ROC performance improves if novelty detection 
is used to generate a confidence measure for rejecting low- 
confidence examples. In this example, two HEP models 
were trained, one for positive ROIs and one for negatives 
ROIs (same ROI database as for classification). Test data 
was evaluated by computing the likelihood ratio of the mod- 
els as well as the absolute value of the log-likelihoods. The 
absolute value of the log-likelihoods are thresholded such 
that low values are considered low confidence and there- 
fore rejected (not classified). As the threshold on the log- 
likelihood is increased, more ROIs are rejected because of 
low confidence and the area under the ROC curve increases. 

5.3   Mammographic Synthesis 

Since the HEP model is a generative model, we can sample 
the model and synthesize new images. In the context of ROI 
classification, synthesized images can provide qualitative 
insight into what features the model is extracting and repre- 
senting for both positive and negative ROIs. Using the same 



Figure 5: Mammographic ROI images synthesized from positive and negative HIP models. Synthesized positive ROIs (left) 
tend to have more focal structure, with more defined borders and higher spatial frequency content. Negative ROIs (right) tend 
to be more amorphous with lower spatial frequency content. 
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Figure 6: (Left)Root mean-squared error vs. size of compressed file, JPEG and HIP. (Right) Maximum error (L°° norm) vs. 
size of compressed file, JPEG and HIP. 

ROI database used for classification, we constructed HEP 
models for positives (masses) and negatives (no masses). 
The trained HIP models were sampled to synthesize new 
ROI images. The sampling procedure begins at the coarsest 
resolution, where the hidden labels are randomly sampled 
from the distribution PV(AL)- The feature images GL are 
then sampled from Pr(G/, | AL). The GL are used to con- 
struct IL-I, from which the F^ are constructed. We then 
sample AL-i from Pr(i4x,_i \AL), and then GL-I from 
Pr(Gi_i | FL, AL-I)- This is repeated until the finest res- 
olution is reached and Jo is constructed. 

Figure 5 shows examples of these images. Inspection 
of the synthesized positive ROIs shows more focal struc- 
ture, with more well-defined borders and higher spatial fre- 
quency content than the negative ROIs. 

5.4   Mammographic Image Compression 

A stream of random variables can be optimally compressed 
if we know their distribution, and so having a HEP model of 
a source of images should allow us to compress examples 
of those images with high efficiency. Here we demonstrate 
compression with HEP models using a simple technique. 

Given an image and a HEP model, we compute 
the most likely value of each hidden label, a*(x) = 
argmax0i(x) Pr(a;,a;, J|f?*) using Equation 18, and code 
each feature vector g; (x) using Pr(gj | f;+i, a*, x). The lat- 
ter is used by decomposing gj(a;) into its components along 
the eigenvectors of the covariance of Pr(g; |f;+i,a*,a;), 
Sa., and coding those components with a specified preci- 
sion using Huffman encoders for the Gaussian distributions 
with variances given by the eigenvalues of Sa*. The re- 
sulting bitstream was stored in a file that was susbequently 



Figure 7: Compression artifacts of JPEG and HEP. Left: Original image, center: JPEG, right: HEP. 

compressed with gzip to reduce the redundancy in the many 
short identical bit patterns. This procedure is currently very 
computationally expensive, and is not necessarily optimal 
even if the HEP model exactly matches the image distribu- 
tion, but it is straightforward to code and serves to demon- 
strate the capability. 

Figure 6 shows the root-mean-squared and maximum er- 
rors versus the size of the reulting compressed file, respec- 
tively. This is for one randomly-chosen mass ROI image, 
which was not part of the training set of the HIP model. 
The HIP algorithm gives mean errors that are comparable 
to JPEG, and suggests that its maximum errors are a little 
lower. It is perhaps not surprising, since the HEP model was 
fit to similar data while JPEG is intended to be general, but it 
demonstrates the potential. Compressed and uncompressed 
images are shown in Figure 7. 

criterion [19]. The computation of mutual information re- 
quires an estimate of entropies, which in turn requires an 
estimate of the underlying densities of the images. The HEP 
model potentially provides a framework for learning those 
densities. 
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6    Conclusion 

We have developed a class of image probability models we 
call hierarchical image probability or HIP models. To jus- 
tify these, we showed that image distributions can be ex- 
actly represented as products over pyramid levels of dis- 
tributions of sub-sampled feature images conditioned on 
coarser-scale image information. We argued that hidden 
variables are needed to capture long-range dependencies 
while allowing us to further factor the distributions over 
position. In our current model the hidden variables act as 
indices of mixture components. The resulting model is very 
similar to the Hidden Markov Tree models, but allows mod- 
elling somewhat more general image structures. Because 
they are models of probability distributions over images, 
they can be used for a wide range of image processing 
tasks e.g. classification, compression, noise-suppression, 
up-sampling, error correction, etc. Here we have presented 
results for mammographic image analysis. However there 
are obviously other modalities and medical application ar- 
eas were HEP models would be useful. One in particular 
is multi-modal fusion, where the problem is to bring a set 
of images, acquired using different imaging modalities, into 
alignment. One method that has demonstrated particularly 
good performance uses mutual information as an objective 
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Abstract 

This paper describes a pattern recognition architecture, which we term hierarchical 

pyramid/neural-network (HPNN), that learns to exploit image structure at multiple- 

resolutions for detecting clinically significant features in digital/digitized mammograms. 

The HPNN architecture consists of a hierarchy of neural networks, each network 

receiving feature inputs at a given scale as well as features constructed by networks lower 

in the hierarchy. Networks are trained using a novel error function for the supervised 

learning of image search/detection tasks when the position of the objects to be found is 

uncertain or ill-defined. We have evaluated the HPNN's ability to eliminate false positive 

regions of interest generated by the University of Chicago's (UofC) Computer-aided 

Diagnosis (CAD) systems for microcalcification and mass detection. Results show that 

the HPNN architecture, trained using the UOP error function, reduces the false positive 

rate of a mammographic CAD system by approximately 50% without significant loss in 

sensitivity. Investigation into the types of false positives that the HPNN eliminates 

suggests that the pattern recognizer is automatically learning and exploiting contextual 

information. Clinical utility is demonstrated through the evaluation of an integrated 

system in a clinical reader study. We conclude that the HPNN architecture learns 

contextual relationships between features at multiple scales and integrates these features 

for detecting microcalcifications and breast masses. 

Keywords: mammography, computer-aided diagnosis, hierarchical pyramid neural 

network, context 



I. Introduction 

Computer-aided diagnosis (CAD) can be defined as a diagnosis made by a radiologist 

who incorporates the results of computer analyses of the radiographs [1]. The goal of 

CAD is to improve radiologists' performance by indicating the sites of potential 

abnormalities, to reduce the number of missed lesions, and/or by providing quantitative 

analysis of specific regions in an image to improve diagnosis. CAD systems typically 

operate as automated "second-opinion" or "double-reading" systems that indicate lesion 

location and/or type. Since individual human observers overlook different findings, it has 

been shown that "double reading" (the review of a study by more than one observer) 

increases the detection rate of breast cancers by 5-15% [2] [3] [4]. Double reading, if not 

done efficiently, can significantly increase the cost of screening. Methods to provide 

improved detection with little increase in costs will have significant impact on the 

benefits of screening. Automated CAD systems are a promising approach for low-cost 

double-reading. 

Several CAD systems have been in development and the first has been recently approved 

by the FDA [5]. Complete systems have been rigorously characterized, both in 

retrospective and prospective trials [6]. Though many have demonstrated clinical utility, 

there is still a need to reduce false positive rates generated by CAD systems. For 

example, prospective clinical studies have shown lower sensitivities and specificities than 

originally found in retrospective studies — 80% cancers detected with 2.4 false positives 

per case in prospective studies versus 85-90% sensitivity at 1-2 false positives per image 

in retrospective studies [7]. 



A. The Role of Neural Networks in CAD 

CAD systems usually consist of two distinct subsystems, one designed to detect 

microcalcifications and one to directly detect masses [8]. A common element in both 

subsystems is a neural network, used to improve detection and reduce false positive rates. 

Figure 1 shows a typical CAD system processing flowchart, generalized for either 

microcalcification or mass detection. The first two stages of the CAD system increase the 

overall signal-to-noise levels in the image and apply rules/heuristics to define a set of 

candidate regions-of-interest (ROIs). These stages have adjustable parameters that 

typically are set to produce a very high sensitivity, usually at a cost of low specificity. 

The final stage is a statistical model or neural network, whose parameters are found using 

error-based optimization given a set of training data. The function of this last stage is to 

reduce false positives (i.e., increase specificity) without significant loss in sensitivity. 

Neural networks are a particularly important class of statistical models in CAD because 

they are able to capture complicated, often nonlinear, relationships in high dimensional 

feature spaces not easily captured by heuristic or rule based algorithms. Several groups 

have developed neural networks architectures for CAD. Some of these architectures 

exploit well-known features that might also be used by radiologists [9][10][11], while 

others utilize more generic feature sets [12][13][14][25]. Both approaches have been 

shown to be useful for detecting clinically significant mammographic anomalies. 

<insert figure 1 here> 



B. Exploiting Context in Mammographic Image Analysis 

Context can be defined as nearby or surrounding structure that establishes the meaning or 

identity of an object. In image analysis, contextual information is often used to detect 

and classify visual objects. For example, detecting a small building in an aerial image 

can be facilitated by searching along roads, since buildings tend to lie in close proximity 

to roads. Both human observers and computer vision systems (e.g. [15]) have been 

developed to exploit contextual relationships in imagery. Likewise, in mammographic 

image analysis context is exploited by radiologists and mammographers for detecting and 

identifying breast abnormalities. The clustering of calcifications, their proximity to 

ductal tissue, the architectural distortion surrounding potential lesions, are all contextual 

cues used by radiologists and mammographers [16]. Contextual relationships can be 

integrated into mammographic CAD systems, being made explicit, given known 

pathology, through incorporation of preset rules and/or feature detectors tuned to capture 

the context. Alternatively, contextual relationships can be learned from the data, 

allowing for more complicated and less obvious contextual cues to be uncovered by the 

pattern recognition system. 

C. Overview of Hierarchical Pyramid/Neural Network Architecture 

We have developed a pattern recognition architecture that learns contextual relationships 

between structure in images for detection and classification of objects. Fundamental to 

the architecture is the multi-scale decomposition of an image, via pyramid transforms 

[20], and the subsequent integration of multi-scale image features by a hierarchy of 

neural networks. These fundamental aspects of the architecture led to the name 



hierarchical pyramid neural networks (HPNN). Several variants of the HPNN can be 

defined, dependent upon the direction of processing in the hierarchy. Figure 2 illustrates 

the general coarse-to-fine and fine-to-coarse architectures. These two architectures detect 

small or large target object by exploiting coarse-scale (low resolution) or fine-scale (high- 

resolution) information associated with the target. For example, in the coarse-to-fine 

HPNN networks operating at low resolution learn contextual features that are passed to 

networks operating at high resolution and integrated to detect the object of interest (i.e. 

the contextual inputs condition the probability of target present). For the fine-to-coarse 

HPNN architecture networks extract detail structure at fine resolutions of the image and 

then pass this detail information to networks operating at coarser scales (see figure 2B). 

For many types of objects, information about the fine detail structure is important for 

discrimination between different classes, i.e., fine resolution structure occurring within 

the context of the coarse resolution structure is indicative of an object class. 

Kinsertfigure 2 here> 

We have previously reported on how the HPNN architectures and learning algorithms can 

improve detection for a general class of image search/detection problems [17][18][19]. 

For example, we have shown that for the problem of detecting small buildings in aerial 

imagery, the coarse-to-fine HPNN architecture has higher accuracy than both 

conventional neural network architectures and standard statistical classification 

techniques [17]. In this paper we present our results of applying the HPNN framework to 

two problems in mammographic CAD; detecting microcalcifications and masses in 



digital/digitized mammograms. The coarse-to-fine HPNN architecture is well-suited for 

the microcalcification problem, while the fine-to-coarse HPNN is suited for mass 

detection. We evaluate the performance and utility of the HPNN framework by 

considering its effects on reducing false positive rates in a well-characterized CAD 

system developed by The University of Chicago (UofC). In both cases 

(microcalcification and mass detection) the HPNN acts as a post-processor of the UofC 

CAD system. 

II. Methods 

In this section we describe three critical elements of the HPNN; 1) integrated feature 

pyramid representation, 2) neural network hierarchy, and 3) the learning algorithm. 

A. Integrated Feature Pyramids 

Image features are extracted and represented as integrated features pyramids (IFPs) [20]. 

Multi-scale pyramid transforms are used to construct the IFP, which is the representation 

that serves as input into the neural network hierarchy. The pyramid transformation for 

the current set of experiments is based on a general class of filters that measure 

orientation energy and image intensity gradients. 

For the coarse-to-fine IFP, steerable filters [21] are used to compute local oriented 

gradient information across scale. The steering properties of these filters enable the direct 

computation of the orientation having maximum energy. Features are constructed which 

represent, at each pixel location, the maximum energy (energy at orientation dmwd, the 



energy at the orientation perpendicular to 6max (6max -90°), and the energy at the diagonal 

(energy at Qmax -45). Figure 3a illustrates the form of the IFP input into the coarse-to-fine 

network hierarchy. 

<insert figure 3 here> 

The IFP for mass detection is slightly different from the coarse-to-fine IFP for 

microcalcification detection (figure 3b). For mass detection, input to the fine-to-coarse 

neural network hierarchy is an IFP having radial and tangential gradient components at 

each resolution, relative to the mass center. The features are filtered versions of the 

image, with filter kernels given by 

V,.P(r,0)- <?! 

i 

7l(q + \p\) 
r\p\e  2   £M(r2)gW (1) 

in polar coordinates, with (q, p) e {(0,1), (1,0), (0,2)}. These are combinations of 

derivatives of Gaussians, and can be written as combinations of separable filter kernels 

and can therefore be computed at relatively low cost. They are also straightforward to 

steer, being just a multiplication by a complex phase factor. These filters are steered in 

the radial and tangential directions relative to the mass centers, using the real and 

imaginary components and their squares and products, as features.1 Features were 

1 The center coordinates of the masses are generated by earlier stages of the CAD system. 
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extracted at each level of the Gaussian pyramid representation of the mass ROI, and used 

as inputs to networks at the same level. 

B. Neural Network Hierarchy 

The neural networks in the HPNN are multi-layer perceptrons, having one hidden 

layer with between 4-8 hidden units. The number of hidden units is chosen via cross- 

validation [22]. All units in a network perform a weighted (wi) sum of their inputs (xi), 

subtracting an offset or threshold (9) from that sum to get the activation (a) 

a = ]►>,*,-0 (2) 

The activation is transformed into a unit's output, y, by passing it through a sigmoid 

function 

y = or(a) = _L_ (3) 
l + e-a 

Each network in the HPNN hierarchy receives input from the integrated feature 

pyramid and hidden unit input from networks lower in the hierarchy.   Networks are 

trained either coarse-to-fine or fine-to-coarse, depending on the architecture.   In the 

coarse-to-fine  HPNN,  the  network lowest  in  the  hierarchy is  first trained until 

convergence and then all parameters in this network are held fixed while the next 

network on the hierarchy is trained.   Coarse-to-fine training is possible because the 

positions of the small objects are well-defined when the resolution is decreased. For the 

fine-to-coarse HPNN, extended objects do not have a definite location at high resolution. 



The entire hierarchy of networks is therefore trained as a single N-layered network (N 

being a function of the number of layers per network and the number of networks in the 

hierarchy).2 Input for both training and testing is raster scanned into each network so that 

the output of a network at any level is an image. For both HPNN architectures the output 

of the network is an image representing the probability that an object is present at each 

x,y position. For the coarse-to-fine architecture each output pixel represents the 

probability of a point-like object (e.g. a microcalcification), while for the fine-to-coarse 

architecture each output pixel represents the probability that a large extended object (e.g. 

a mass) is within that low-resolution pixel. 

C. Learning Algorithm 

The conventional error function for training a neural network on a binary detection 

problem is the cross-entropy error function, which is the negative logarithm of the 

probability that the network produces detection decisions that agree with the targets in the 

training data. It is given by 

E = -S [dt log yt - (1 - dt) log(l - yt)] (4) 

where di e {0,1} is the desired output and y» is the actual output of the neuron, given by 

equation 3. For image-based detection, since networks are typically applied across a set 

of pixels, both y, and dt are a function of position; y, (x, y), di (x, y). Thus every position 

2 Error back-propagation through the pyramid reduction operations is straightforward, since this operation 
is linear. 
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in an image is either associated with the presence, di (x, y) -1, or absence, di (x, y) = 0, 

of a target. 

In examining the truth data for the mammographic ROI datasets, we found that 

radiologists often make small errors in localizing individual microcalcifications and 

masses. For microcalcifications, these errors appear to be within +1-2 pixels of the 

correct position. For masses, the positional error also includes the extent of the mass— 

masses have ill-defined borders that are not easily ground-truthed, even by an expert. If 

the exact positions of the objects are unknown then the probability of detecting the 

objects at the correct positions cannot be evaluated and using equation 4 will result in 

poor performance, as will be illustrated below. 

Consider instead the probability of detecting an object of interest when detection is 

defined as at least one pixel detected within a certain region known to contain the object. 

For a dataset with a coordinate vector for each object, let xt represent the coordinates of 

the i* object.3 Define a region P, as set of pixel locations for the 1th object that incorporate 

the known magnitude of the uncertainty or positional error in the truth data. A single 

detection within P, will represent the detection of the i01 object. Denote the output of the 

network when applied to the input vector derived from the neighborhood of 3c, to be 

y(xj). The probability of the network producing at least one detection in P; is one minus 

3 Note that for analysis of 2D imagery, such as mammograms, xt ={x,y}. However the 

formulation can be extended across an arbitrary coordinate space, so we use xi for generality. 
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the probability of producing no detection in P, , or 1 — J~J (1 — y(3c)). As with cross- 
xeP, 

entropy, the probability of not detecting an object at a negative position xt is 1 - y(xt). If 

we define N as the set of all know negative locations then the new error function 

becomes; 

( \ 

iw=-5>g i-n^-yW) -E10^-**)) 
xePj 

(5) 
X:ZN 

We call this the Uncertain Object Position (UOP) error function. The first term of 

equation 5 is the probability of detecting at least one pixel in a positive region while the 

second term is the probability of no detection in a negative region. The gradient of EUOP 

with respect to the network weights is 

dE, UOP 

dw = S 
no-**» 
xeP 

1^ J- 7i=P. 

dy(x)ldw 

n(l-v(x))-l^(l-y(x)) 
xePt 

+ y__l__ 
dw 

(6) 

which is used in an optimization loop for training.' 

a ^weight decay" regularization term, r = — ^ wi   , is added to the error functions to prevent _v -■-2 

2^ 
the networks from becoming "over-trained". A was adjusted to minimize the cross-validation 
error, computed by dividing the training data into disjoint subsets whose union is the entire set. 
The network was first trained on all of the training data, and then, starting from this set of 
weights, the network was retrained on the data with one of the subsets left out. The resulting 
network was tested on the "holdout" subset. This retraining and testing with a holdout set was 
repeated for each of the subsets, and the average of the errors on the subsets is the cross- 
validation error, an unbiased estimate of the average error on new data. 



12 

As an illustration of the utility of the UOP error function, we compare the detection 

performance, with a network trained using cross-entropy, for a "toy problem" as shown 

in figure 4. A 10-by-10 grid of single pixel objects was embedded in a noisy background. 

Single pixel objects were assigned a pixel value of one, while background pixels had a 

value of one-half or zero randomly assigned with equal probability. Errors were 

introduced into the truth data by randomly shifting the truth data within a 3-by-3 pixel 

neighborhood centered around the object's true position (see figure 5b). A "network" 

consisting of a single sigmoidal neuron, with activation and transfer functions as in 

equations 2 and 3, was used to search the image for the objects. At a given location 

x = {jc,y}the inputs to the network are nine pixel values from a 3-by-3 window in the 

input image, centered on x. 

<insert figure 4 here> 

In figure 4, the truth image shows both the single point truth data and the square 3-by-3 

region around these pixels. The images in figure 4d and e are the outputs of the network 

trained using the cross-entropy error function. The cross-entropy trained network with the 

output in figure 4d was trained using single point truth data while the network with the 

output shown in figure 4e was trained using the 3-by-3 region truth data. Figure 4f is the 

output of the network trained using the UOP error function with positive regions P, as 
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shown in figure 4c. As is evident from the figure, the UOP trained network produces 

qualitatively superior results. 

We measured, quantitatively, the detection performance of the networks by computing 

the sensitivity and false positive rates on the data. For the cross entropy trained networks 

sensitivity was 90% with a 7.5% pixel false positive rate. For the UOP trained network, 

sensitivity was 100% with a 0% false positive rate. 

III. Results 

A. The Experimental Paradigm 

We conducted a series of experiments to determine the utility of the HPNN architecture 

for mammographic CAD. The goal of the first set of experiments was to validate our 

hierarchical network architecture and learning algorithms for capturing contextual 

information and to demonstrate improved detection performance, relative to traditional 

neural network architectures. The second set of experiments focused on a quantitative 

and rigorous evaluation of the HPNN, in particular evaluation of two architectures for 

reducing the false positive rate of the state-of-the-art CAD systems developed by UofC. 

Finally, as a demonstration of clinical utility, we integrated the HPNN with a UofC CAD 

system and evaluated its performance in a Reader Study. 
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B. Validation of the network hierarchy architecture 

Three neural network architectures were evaluated, each having one hidden layer with 4- 

8 hidden units.5 A two level coarse-to-fine IFP was constructed and used as input to the 

different network architectures. As shown in figure 5, network A consists of a single 

network processing data from the coarsest resolution of the IFP, network B is a single 

network receiving input from all levels of the IFP and network C is a 2 level coarse-to- 

fine HPNN. The networks had activation and transfer functions described previously 

(equations 2 &3) and were trained using cross-entropy error (equation 4). 

We trained the networks on five mammograms. Each mammogram had one or two 

clusters with approximately 20 microcalcifications per mammogram, for a total of 97. 

The results given below were measured on five test mammograms with one cluster each, 

for a total of 95 microcalcifications. 

<insert figure 5 here> 

Results for the three networks are shown as receiver operating characteristic (ROC) 

curves [23] in Figure 5. Note the improvement as finer resolution information is added to 

the network (networks A vs B) and especially the very large improvement when using the 

hierarchical network architecture (networks A&B vs. C). We considered whether 

network C was in fact taking advantage of context information by examining the 

representations developed by various hidden units in the network. Figure 6 shows 
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outputs of two classes of hidden units. The first class (figure 6 B) appears to represent 

point-like structure, similar to the structure of an individual microcalcification. The 

second class of hidden unit (figure 6C) has a different representation. In this case, the unit 

is selective for long, extended, and oriented structure. When shown to radiologists, they 

noted that this hidden unit structure appeared correlated with the ductal and vascular 

anatomy. As mentioned previously, the development of breast cancer is often correlated 

with these anatomical structures. Results for this experiment suggest that the coarse-to- 

fine hierarchical neural network is able to automatically extract information that is 

consistent with known contextual relationships and that this may result in the observed 

improvement in detection performance. 

<insert figure 6 here> 

C. Validation of UOP for microcalcification detection 

To validate the utility of our UOP error function (equation 5) for mammographic CAD 

we conducted experiments comparing detection performance with the cross entropy error 

function (equation 4). We trained and tested a single neuron network to detect 

microcalcifications, using the dataset described in the previous experiment. Expert 

radiologists constructed the truth-data, however inspection of the data indicated 

positional errors of up to 2 pixels. At a given location x, the inputs to the network were 

the 25 pixel values in a 5x5 window in the input, centered on x. We expect that the 

5 Model complexity was controlled for by adding/subtracting hidden units using a cross- 
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average local brightness is not related to the detection problem. Therefore, to enforce 

invariance to average local brightness we constrained the weights of the single unit 

network to sum to one. 

Figure 7 shows results for a test mammogram. Note that the network trained using UOP 

generates fewer false positives than the conventional cross entropy error function. If 

thresholds are applied to the networks so that 50% of the true positives are detected, the 

UOP trained network has 50% fewer false positives that the cross entropy network. 

<insertfigure 7 here> 

D. Results on research database: microcalcification detection 

Given results for the previous two experiments we next evaluated the performance of an 

HPNN architecture trained using the UOP error. In the remaining experiments described 

in this paper we evaluated the performance of the HPNN as a post processor or adjunct 

for the UofC CAD system. 

UofC provided data used for the microcalcification experiments. The first set of data 

consists of 50 true positive and 86 false positive ROIs. These ROIs are 99-by-99 pixels 

and digitized at lOOum resolution. A second set of data from the UofC clinical testing 

database included 47 true positives and 103 false positives, also 99-by-99 and sampled at 

lOOum resolution. 

validation error. 
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We trained a coarse-to-fine HPNN (figure 2A), using UOP error function, to detect 

individual microcalcifications. Training and testing were done using a jackknife protocol 

[24], whereby one half of the data (25 TPs and 43 FPs) was used for training and the 

other half for testing. Results were compiled for five different random splits of the data. 

For a given ROI, the probability map produced by the network was thresholded at a given 

value to produce a binary detection map. Region growing was used to count the number 

of distinct detected regions. The ROI was classified as a positive if the number of 

regions was greater than or equal to a given cluster criterion. 

Table 1 compares ROC results for the HPNN and the shift-invariant artificial neural 

network (SIANN) network that had been used in the UofC CAD system [25]. Reported 

are the area under the ROC curve (Az), the standard deviation of Az across the subsets of 

the jackknife (GAZ)> the false positive fraction at a true positive fraction of 1.0 (FPF 

@TPF=1.0) and the standard deviation of the FPF across the subsets of the jackknife 

(OFPF)- AZ and FPF@TPF=1.0 represent the averages of the subsets of the jackknife. 

Note that both networks operate best when the cluster criterion (cc) is set to two. For this 

case the HPNN has a higher Az than the SIANN network while also halving the false 

positive rate.   This difference, between the two networks' Az and FPF values, is 

statistically significant (z-test; PAZ=-0018, /?FPF=-00001) 

<insert table 1 here> 
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The second set of data was tested using a coarse-to-fine HPNN trained on the first 

dataset. 150 ROIs taken from a clinical study and classified as positive by the full UofC 

CAD system for microcalcification detection (including the SIANN neural network) were 

used to test the HPNN. Though the UofC CAD system classified all 150 ROIs as 

positive, only 47 were in fact positive while 103 were negatives—this dataset was 

overpopulated with false positives. We applied the HPNN trained on the entire previous 

data set to this new set of ROIs. The HPNN was able to reclassify 47/103 negatives as 

negative, without loss in sensitivity, i.e., no false negatives were introduced. 

On examining the negative examples rejected by the coarse-to-fine HPNN, we found that 

many of these ROIs contained linear, high-contrast structure that would otherwise be 

false positives for the SIANN network (see figure 8). One possible reason for this is that 

the coarse-to-fine HPNN also learns context for the false positives. SIANN presumably 

interprets the "peaks" on the linear structure as calcifications. However because the 

coarse-to-fine HPNN also integrates information from low resolution it can associate 

these "peaks" with linear structure at low resolution and thus determine that these peaks 

are not microcalcifications. This is an interesting difference from our earlier results, in 

which the networks appeared to learn contextual relationships associated with positive 

examples—ductal and vascular anatomy.   Thus it appears that the HPNN can exploit 

contextual relationships to both detect true positives and eliminate false positives. 

<insertfigure 8 here> 
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E. Results on a research data base: mass detection 

The next set of experiments applied a fine-to-coarse HPNN architecture to detect masses 

in digitized mammograms. Radiologists often distinguish malignant from benign masses 

based on the detailed shape of the mass border and the presence of spicules along the 

border [16]. We evaluate the fine-to-coarse HPNN, figure 2B, for its ability to integrate 

high-resolution information within the context of coarse-scale mass structure. 

The experimental paradigm is similar to the microcalcification experiments in that we 

apply the HPNN as a post-processor to the UofC CAD system for mass detection. The 

data in our study consists of 72 positive and 100 negative ROIs. The negative ROIs are 

false-positives of the earlier stages of the CAD system. These are 256-by-256 pixels and 

are sampled at 200um resolution. 

Results for the fine-to-coarse HPNN system are shown in Table 2. The Az value on the 

test set was 0.85. These results show a 51% reduction in false positive rate of the UofC 

mass detection system without loss in sensitivity. 

<insert table 2 here> 

F. Results in Clinical evaluation 

As a final test of the utility of the HPNN architecture a clinical reader study was 

conducted to evaluate the performance of the combined HPNN/UoC  system for 
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microcalcification detection.6 Details of the reader study have been described previously 

[26]. In this paper we summarize the results. 

Table 3 outlines the protocol. Approximately 900 retrospective mammographic cases 

were collected and read by ten readers. Five readers were considered experts in 

mammography (spent over 50% of their time reading mammograms) and the other five 

were general radiologists who were MQSA certified [27]. Films were read in two 

conditions; film only (unaided) or film + computer results (aided). 

<insert table 3 here> 

Results of the computer output alone are shown in Table 4. Note that on this new dataset 

the HPNN continues to reduce the false positive rate of the microcalcification CAD 

system. 

<insert table 4 here> 

The clinical utility of the complete system, which includes the CAD systems for mass 

detection and the HPNN enhanced system for microcalcification detection, is shown in 

Table 5, comparing reader performance with and without the computer aid. Expert 

readers showed a statistically significant improvement when using the CAD system, 

however the improvement was not statistically significant for the general radiologists. 

1 In this clinical evaluation only the coarse-to-fine HPNN for microcalcification was integrated 
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One possible reason is that false positives continue to be an issue, since experts are better 

than general radiologists at negating or ignoring these false positives. Additional analysis 

is required to understand the difference between the two groups. However the overall 

results show that the CAD system, which included the HPNN, can potentially improve 

performance of mammographic screening, in this case for more experienced radiologists. 

<insert table 5 here> 

IV. Discussion 

In this paper we have demonstrated coarse-to-fine and fine-to-coarse HPNN architectures 

that learn contextual relationships for detecting microcalcifications and masses in 

digital/digitized mammograms. Though the architectures are novel, they bear some 

resemblance to previous network architectures. For example, the fine-to-coarse HPNN is 

similar to the convolution network proposed by Le Cun, [28], however with a few notable 

differences. The fine-to-coarse HPNN receives as inputs preset features extracted from 

the image (in this case radial and tangential gradients) at each resolution, compared to the 

convolution network, whose inputs are the original pixel values at the highest resolution. 

Secondly, in the fine-to-coarse HPNN, the inputs to a hidden unit at a particular position 

are the pixel values at that position in each of the feature images, one pixel value per 

feature image. Thus the HPNN's hidden units do not learn linear filters, except as linear 

combinations of the filters used to form the features. Finally the fine-to-coarse HPNN is 

also trained using the UOP error function, which is not used in the convolution network. 

with the UofC CAD and evaluated. 
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The two architectures we have described can be combined into a more general 

architecture that integrates information both coarse-to-fine and fine-to-coarse. This bi- 

directional integration, shown in the architecture of figure 9, is attractive in that most 

objects can be considered to have a "natural scale" — typically some measure of their 

size. Classification of the object might be improved through integration of finer and 

coarser resolution information, relative to this natural scale. Since size can vary within a 

class of objects, it may be worthwhile to include outputs at more than one level of the 

HPNN. In this case, the UOP error (Equation 5) needs to be modified to include 

uncertainty over scale, but this is easily accomplished by changing the product to range 

over positions at all output levels. We can further generalize the architecture by adding 

connections between the fine-to-coarse and coarse-to-fine paths, but one must be careful 

to avoid loops when deciding where these connections should be added. We are 

currently investigating the application of this generalized HPNN architecture to mass 

detection. 

<insertfigure 9 here> 

Most of our results were reported relative to the UofC CAD mammographic systems, 

since they are considered to be well-characterized and state-of-the-art. UofC is 

continuing to improve upon their systems and our current results are only meant as a 

comparison to a given standard at a given point in time. An issue in CAD research is the 

need for the development of appropriate benchmarks for comparing different algorithms. 
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Several datasets are being developed which might eventually support such comparisons 

though they have yet to be widely accepted . 

V. Conclusion 

We have presented the application of hierarchical pyramid neural network architectures 

to two problems in computer-aided diagnosis; the detection of microcalcifications in 

mammograms and the direct detection of masses in mammograms. In the case of 

microcalcifications, the coarse-to-fine HPNN architecture successfully discovered large- 

scale context information that improves the system's performance in detecting small 

objects. A coarse-to-fine HPNN has been directly integrated with the UofC CAD system 

for microcalcification detection and the complete system has been tested in clinical reader 

study. In the case of mass detection, a fine-to-coarse HPNN architecture was used to 

exploit information from fine resolution detail in order to eliminate false positives. In 

general, we have found that the HPNN is a useful class of network architecture for 

exploiting context and integrating information at multiple scales. 
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Figure 1 Processing in a CAD system. 

B 

Figure 2: Hierarchical pyramid/neural network architectures. (A) fine-to-coarse and (B) coarse-to-fine. In (A) context is 
propagated from low to high resolution via the hidden units of low-resolution networks. In (B) small scale detail 
information is propagated from high to low resolution. In both cases the output of the last integration network is an 
estimate of the probability that a target is present. Arrow shows direction of information flow. 
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Figure 3 Integrated Feature Pyramids (IFPs) for A) coarse-to-fine and B) fine-to-coarse HPNN. 
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Figure 4: 'Toy problem" illustrating performance of UOP error function versus cross-entropy error. (A) Image 
consisting of 10x10 grid of white dots in a background of random binary noise. (B) Single point truth data with 
positional error. (C) Truth data created by considering the magnitude of the positional error (+/-1 pixel results in 3X3 
regions). (D) Output for network trained using cross-entropy error and truth data in B. (E) Output of network trained 
using cross-entropy error and truth-data in C. (F) Output of network trained using UOP error and truth data in C. 
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Figure 5: Raw ROC curves for the three networks A, B and C (HPNN). 
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Figure 6 (A) Original mammogram, (B) hidden unit representations for networks operating at high resolutions 
(C) hidden unit representations for networks operating at low resolutions. Radiologists have noted that some 
of the structure in C appears to correlate with specific anatomy in the breast (e.g. ducts and/or blood vessels), 
indicating that these hidden units may represent contextual information. 
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Figure 7 Detecting microcalcifications using UOP error function. The upper row contains reduced 
resolution images from one full size test mammogram. The lower row shows a region of interest 
at full resolution. (A) image (B) truth data (C) output of UOP trained network (D) output of cross 
entropy trained network. 

Linear context 

Figure 8 Typical negative ROI that was eliminated by the coarse-to-fine HPNN for microcalcification detection. The 
HPNN is able to associate the intensity peaks, which in isolation may be interpreted as microcalcfications, with the 
coarse-scale linear structure in order to classify the ROI as a negative. 
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Figure 9 Generalized HPNN architecture. Integration is bi-directional with output networks at the "natural scale" of the 
object. The natural scale may be known a priori or it can be searched for by optimizing over several output networks 

(e.g. search for the best one over the two output networks shown above). 
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Tables 

Table 1 Comparison of HPNN and SIANN networks 

HPNN SIANN 
Az OAZ FPF 

TPF=1.0 
OFPF Az &AZ 

FPF 
TPF=1.0 

OFPF 

1 .93 .03 .24 .11 .88 .04 .50 .11 
2 .94 .02 .21 .11 .91 .02 .43 .10 
3 .94 .03 .39 .19 .91 .03 .48 .19 
4 .93 .03 .48 .15 .90 .05 .56 .21 
5 .93 .03 .51 .06 .88 .05 .68 .21 

Table 2 Sensitivity and specificity for fine-to-coarse HPNN for mass detection 

Sensitivity Specificity 
100% 51% 
95% 57% 
90% 67% 
80% 79% 

Table 3: Summary of Reader Study protocol. 

899 cases (4 standard views, original mammograms) 
• 501 normals (including 10 atypia) 
• 199 benign 
• 199 malignant (58 DCIS+141 invasive) (22%) 

two reading conditions: 
• film only 
• film + computer results 
• films were mounted on alternators 
• computer results were shown on CRT monitors 

standard observer study protocol 
»    training session randomized reading order, etc. 

10 readers: 
• 5 specialists (>50% breast imaging) 
• 5 general radiologists (MQSA certified) 



Table 4: False positive rates of CAD System 

CAD Program Number   false 
positives     per 
image (at fixed 
sensitivity) 

Mass detection 1.6 
Microcalc detection (no HPNN) 1.04 
Microcalc detection (with HPNN) 0.88 
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Table 5: Reader study results using CAD system. 

Reader Specialists General Radiologists 

Unaided Aided Unaided Aided 
1 0.851 0.878 0.813 0.824 
2 0.891 0.911 0.862 0.876 
3 0.878 0.898 0.881 0.888 
4 0.911 0.914 0.876 0.863 
5 0.884 0.903 0.899 0.892 

avg 0.883 0.901 0.866 0.869 
p value 0.1 31 0.19 
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